mostly for objects that have the fewest dependencies on `Makefile'
(since they were mostly for utilities and objects generated from *.s
and these don't depend on profiling flags).
Give an explicit rule for building vnode_if.o. This fixes building
it without ${PROF}.
Use .ORDER instead of a stamp file to avoid building vnode_if.[ch]
concurrently.
Removed explicit dependencies that will be generated by `make' (.c.o)
or will be generated by mkdep.
Added missing dependencies of special objects on opt_global.h.
Use ${NORMAL_C} instead of special rules for special objects where
possible.
FIxed dependencies of vers.o.
NFS_MINATTRTIMO VREG attrib cache timeout in sec
NFS_MAXATTRTIMO
NFS_MINDIRATTRTIMO VDIR attrib cache timeout in sec
NFS_MAXDIRATTRTIMO
NFS_GATHERDELAY Default write gather delay (msec)
NFS_UIDHASHSIZ Tune the size of nfssvc_sock with this
NFS_WDELAYHASHSIZ and with this
NFS_MUIDHASHSIZ Tune the size of nfsmount with this
NFS_NOSERVER (already documented in LINT)
NFS_DEBUG turn on NFS debugging
also, because NFS_ROOT is used by very different files, it has been
renamed to opt_nfsroot.h instead of the old opt_nfs.h....
end of the main options section.
Turned on documented option OVERRIDE_TUNER. LINT is primarily
for turning on options, not for documenting them.
Don't list IPFILTER twice (once as broken).
which makes adjtime(2) useless and confuses xntpd(8) into refusing
to start even when it would use the kernel PLL instead of adjtime().
The result is the same as recommended by tickadj(8), at least when
HZ divides 10^6. Of course, you wouldn't want to actually use
adjtime() when HZ is large. In the silly boundary case of HZ == 10^6,
tickadj == tick == 1 so the clock stops while adjtime() is active.
Don't generate declarations for isa interrupt handlers at all.
Isa interrupt handlers are now declared in <i386/isa/isa_device.h>
but should be converted take a `void *' arg and staticized as
soon as possible.
Updated CONFIGVERS. New configs are very incompatible with
previous versions.
* Eliminate bus_t and make it possible for all devices to have
attached children.
* Support dynamically extendable interfaces for drivers to replace
both the function pointers in driver_t and bus_ops_t (which has been
removed entirely. Two system defined interfaces have been defined,
'device' which is mandatory for all devices and 'bus' which is
recommended for all devices which support attached children.
* In addition, the alpha port defines two simple interfaces 'clock'
for attaching various real time clocks to the system and 'mcclock'
for the many different variations of mc146818 clocks which can be
attached to different alpha platforms. This eliminates two more
function pointer tables in favour of the generic method dispatch
system provided by the device framework.
Future device interfaces may include:
* cdev and bdev interfaces for devfs to use in replacement for specfs
and the fixed interfaces bdevsw and cdevsw.
* scsi interface to replace struct scsi_adapter (not sure how this
works in CAM but I imagine there is something similar there).
* various tailored interfaces for different bus types such as pci,
isa, pccard etc.
work in progress and has never booted a real machine. Initial
development and testing was done using SimOS (see
http://simos.stanford.edu for details). On the SimOS simulator, this
port successfully reaches single-user mode and has been tested with
loads as high as one copy of /bin/ls :-).
Obtained from: partly from NetBSD/alpha
FreeBSD/alpha. The most significant item is to change the command
argument to ioctl functions from int to u_long. This change brings us
inline with various other BSD versions. Driver writers may like to
use (__FreeBSD_version == 300003) to detect this change.
The prototype FreeBSD/alpha machdep will follow in a couple of days
time.
so that the new behaviour is now default.
Solves the "infinite loop in diversion" problem when more than one diversion
is active.
Man page changes follow.
The new code is in -stable as the NON default option.
Prior to this change, Accidental recursion protection was done by
the diverted daemon feeding back the divert port number it got
the packet on, as the port number on a sendto(). IPFW knew not to
redivert a packet to this port (again). Processing of the ruleset
started at the beginning again, skipping that divert port.
The new semantic (which is how we should have done it the first time)
is that the port number in the sendto() is the rule number AFTER which
processing should restart, and on a recvfrom(), the port number is the
rule number which caused the diversion. This is much more flexible,
and also more intuitive. If the user uses the same sockaddr received
when resending, processing resumes at the rule number following that
that caused the diversion. The user can however select to resume rule
processing at any rule. (0 is restart at the beginning)
To enable the new code use
option IPFW_DIVERT_RESTART
This should become the default as soon as people have looked at it a bit