The fix works by reverting the ordering of free memory so that the
chances of contig_malloc() succeeding increases.
PR: 23291
Submitted by: Andrew Atrens <atrens@nortel.ca>
struct swblock entries by dividing the number of the entries by 2
until the swap metadata fits.
- Reject swapon(2) upon failure of swap_zone allocation.
This is just a temporary fix. Better solutions include:
(suggested by: dillon)
o reserving swap in SWAP_META_PAGES chunks, and
o swapping the swblock structures themselves.
Reviewed by: alfred, dillon
of explicit calls to lockmgr. Also provides macros for the flags
pased to specify shared, exclusive or release which map to the
lockmgr flags. This is so that the use of lockmgr can be easily
replaced with optimized reader-writer locks.
- Add some locking that I missed the first time.
cases with file fragments and read-write mmap's can lead to a situation
where a VM page has odd dirty bits, e.g. 0xFC - due to being dirtied by
an mmap and only the fragment (representing a non-page-aligned end of
file) synced via a filesystem buffer. A correct solution that
guarentees consistent m->dirty for the file EOF case is being
worked on. In the mean time we can't be so conservative in the
KASSERT.
Backout the previous delta (rev 1.4), it didn't make any difference.
If the requested handle is NULL then don't add it to the list of
objects, to be found by handle.
The problem is that when asking for a NULL handle you are implying
you want a new object. Because objects with NULL handles were
being added to the list, any further requests for phys backed
objects with NULL handles would return a reference to the initial
NULL handle object after finding it on the list.
Basically one couldn't have more than one phys backed object without
a handle in the entire system without this fix. If you did more
than one shared memory allocation using the phys pager it would
give you your initial allocation again.
Removed most of the hacks that were trying to deal with low-memory
situations prior to now.
The new code is based on the concept that I/O must be able to function in
a low memory situation. All major modules related to I/O (except
networking) have been adjusted to allow allocation out of the system
reserve memory pool. These modules now detect a low memory situation but
rather then block they instead continue to operate, then return resources
to the memory pool instead of cache them or leave them wired.
Code has been added to stall in a low-memory situation prior to a vnode
being locked.
Thus situations where a process blocks in a low-memory condition while
holding a locked vnode have been reduced to near nothing. Not only will
I/O continue to operate, but many prior deadlock conditions simply no
longer exist.
Implement a number of VFS/BIO fixes
(found by Ian): in biodone(), bogus-page replacement code, the loop
was not properly incrementing loop variables prior to a continue
statement. We do not believe this code can be hit anyway but we
aren't taking any chances. We'll turn the whole section into a
panic (as it already is in brelse()) after the release is rolled.
In biodone(), the foff calculation was incorrectly
clamped to the iosize, causing the wrong foff to be calculated
for pages in the case of an I/O error or biodone() called without
initiating I/O. The problem always caused a panic before. Now it
doesn't. The problem is mainly an issue with NFS.
Fixed casts for ~PAGE_MASK. This code worked properly before only
because the calculations use signed arithmatic. Better to properly
extend PAGE_MASK first before inverting it for the 64 bit masking
op.
In brelse(), the bogus_page fixup code was improperly throwing
away the original contents of 'm' when it did the j-loop to
fix the bogus pages. The result was that it would potentially
invalidate parts of the *WRONG* page(!), leading to corruption.
There may still be cases where a background bitmap write is
being duplicated, causing potential corruption. We have identified
a potentially serious bug related to this but the fix is still TBD.
So instead this patch contains a KASSERT to detect the problem
and panic the machine rather then continue to corrupt the filesystem.
The problem does not occur very often.. it is very hard to
reproduce, and it may or may not be the cause of the corruption
people have reported.
Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>)
Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
Pre-rfork code assumed inherent locking of a process's file descriptor
array. However, with the advent of rfork() the file descriptor table
could be shared between processes. This patch closes over a dozen
serious race conditions related to one thread manipulating the table
(e.g. closing or dup()ing a descriptor) while another is blocked in
an open(), close(), fcntl(), read(), write(), etc...
PR: kern/11629
Discussed with: Alexander Viro <viro@math.psu.edu>
the offending inline function (BUF_KERNPROC) on it being #included
already.
I'm not sure BUF_KERNPROC() is even the right thing to do or in the
right place or implemented the right way (inline vs normal function).
Remove consequently unneeded #includes of <sys/proc.h>
- Close a small race condition. The sched_lock mutex protects
p->p_stat as well as the run queues. Another CPU could change p_stat
of the process while we are waiting for the lock, and we would end up
scheduling a process that isn't runnable.
write caching is disabled on both SCSI and IDE disks where large
memory dumps could take up to an hour to complete.
Taking an i386 scsi based system with 512MB of ram and timing (in
seconds) how long it took to complete a dump, the following results
were obtained:
Before: After:
WCE TIME WCE TIME
------------------ ------------------
1 141.820972 1 15.600111
0 797.265072 0 65.480465
Obtained from: Yahoo!
Reviewed by: peter
in the face of non-stripe-aligned swap areas. The bug could cause a
panic during boot.
Refuse to configure a swap area that is too large (67 GB or so)
Properly document the power-of-2 requirement for SWB_NPAGES.
The patch is slightly different then the one Tor enclosed in the P.R.,
but accomplishes the same thing.
PR: kern/20273
Submitted by: Tor.Egge@fast.no
and initialized during boot. This avoids bloating sizeof(struct lock).
As a side effect, it is no longer necessary to enforce the assumtion that
lockinit()/lockdestroy() calls are paired, so the LK_VALID flag has been
removed.
Idea taken from: BSD/OS.
it to lower its memory usage. This was mentioned on the mailing
lists ages ago, and I've lost the name of the person who brought
it up.
Reviewed by: alc
Add lockdestroy() and appropriate invocations, which corresponds to
lockinit() and must be called to clean up after a lockmgr lock is no
longer needed.
include:
* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)
* Per-CPU idle processes.
* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).
Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh
the SF_IMMUTABLE flag to prevent writing. Instead put in explicit
checking for the SF_SNAPSHOT flag in the appropriate places. With
this change, it is now possible to rename and link to snapshot files.
It is also possible to set or clear any of the owner, group, or
other read bits on the file, though none of the write or execute
bits can be set. There is also an explicit test to prevent the
setting or clearing of the SF_SNAPSHOT flag via chflags() or
fchflags(). Note also that the modify time cannot be changed as
it needs to accurately reflect the time that the snapshot was taken.
Submitted by: Robert Watson <rwatson@FreeBSD.org>
the gating of system calls that cause modifications to the underlying
filesystem. The gating can be enabled by any filesystem that needs
to consistently suspend operations by adding the vop_stdgetwritemount
to their set of vnops. Once gating is enabled, the function
vfs_write_suspend stops all new write operations to a filesystem,
allows any filesystem modifying system calls already in progress
to complete, then sync's the filesystem to disk and returns. The
function vfs_write_resume allows the suspended write operations to
begin again. Gating is not added by default for all filesystems as
for SMP systems it adds two extra locks to such critical kernel
paths as the write system call. Thus, gating should only be added
as needed.
Details on the use and current status of snapshots in FFS can be
found in /sys/ufs/ffs/README.snapshot so for brevity and timelyness
is not included here. Unless and until you create a snapshot file,
these changes should have no effect on your system (famous last words).
SYSCTL_LONG macro to be consistent with other integer sysctl variables
and require an initial value instead of assuming 0. Update several
sysctl variables to use the unsigned types.
PR: 15251
Submitted by: Kelly Yancey <kbyanc@posi.net>
set equal to the number of kilobytes in your cache. The old options are
still supported for backwards compatibility.
Submitted by: Kelly Yancey <kbyanc@posi.net>
and sysv shared memory support for it. It implements a new
PG_UNMANAGED flag that has slightly different characteristics
from PG_FICTICIOUS.
A new sysctl, kern.ipc.shm_use_phys has been added to enable the
use of physically-backed sysv shared memory rather then swap-backed.
Physically backed shm segments are not tracked with PV entries,
allowing programs which use a large shm segment as a rendezvous
point to operate without eating an insane amount of KVM in the
PV entry management. Read: Oracle.
Peter's OBJT_PHYS object will also allow us to eventually implement
page-table sharing and/or 4MB physical page support for such segments.
We're half way there.
have pv_entries. This is intended for very special circumstances,
eg: a certain database that has a 1GB shm segment mapped into 300
processes. That would consume 2GB of kvm just to hold the pv_entries
alone. This would not be used on systems unless the physical ram was
available, as it's not pageable.
This is a work-in-progress, but is a useful and functional checkpoint.
Matt has got some more fixes for it that will be committed soon.
Reviewed by: dillon
to various pmap_*() functions instead of looking up the physical address
and passing that. In many cases, the first thing the pmap code was doing
was going to a lot of trouble to get back the original vm_page_t, or
it's shadow pv_table entry.
Inspired by: John Dyson's 1998 patches.
Also:
Eliminate pv_table as a seperate thing and build it into a machine
dependent part of vm_page_t. This eliminates having a seperate set of
structions that shadow each other in a 1:1 fashion that we often went to
a lot of trouble to translate from one to the other. (see above)
This happens to save 4 bytes of physical memory for each page in the
system. (8 bytes on the Alpha).
Eliminate the use of the phys_avail[] array to determine if a page is
managed (ie: it has pv_entries etc). Store this information in a flag.
Things like device_pager set it because they create vm_page_t's on the
fly that do not have pv_entries. This makes it easier to "unmanage" a
page of physical memory (this will be taken advantage of in subsequent
commits).
Add a function to add a new page to the freelist. This could be used
for reclaiming the previously wasted pages left over from preloaded
loader(8) files.
Reviewed by: dillon
<sys/bio.h>.
<sys/bio.h> is now a prerequisite for <sys/buf.h> but it shall
not be made a nested include according to bdes teachings on the
subject of nested includes.
Diskdrivers and similar stuff below specfs::strategy() should no
longer need to include <sys/buf.> unless they need caching of data.
Still a few bogus uses of struct buf to track down.
Repocopy by: peter
a struct buf. Don't try to examine B_ASYNC, it is a layering violation
to do so. The only current user of this interface is vn(4) which, since
it emulates a disk interface, operates on struct bio already.