that works in the new threaded kernel. It was commented out of
the disksort routine earlier this year for the reasons given in
kern/subr_disklabel.c (which is where this code used to reside
before it moved to kern/subr_disk.c):
----------------------------
revision 1.65
date: 2002/04/22 06:53:20; author: phk; state: Exp; lines: +5 -0
Comment out Kirks io-request priority hack until we can do this in a
civilized way which doesn't cause grief.
The problem is that it is not generally safe to cast a "struct bio
*" to a "struct buf *". Things like ccd, vinum, ata-raid and GEOM
constructs bio's which are not entrails of a struct buf.
Also, curthread may or may not have anything to do with the I/O request
at hand.
The correct solution can either be to tag struct bio's with a
priority derived from the requesting threads nice and have disksort
act on this field, this wouldn't address the "silly-seek syndrome"
where two equal processes bang the diskheads from one edge to the
other of the disk repeatedly.
Alternatively, and probably better: a sleep should be introduced
either at the time the I/O is requested or at the time it is completed
where we can be sure to sleep in the right thread.
The sleep also needs to be in constant timeunits, 1/hz can be practicaly
any sub-second size, at high HZ the current code practically doesn't
do anything.
----------------------------
As suggested in this comment, it is no longer located in the disk sort
routine, but rather now resides in spec_strategy where the disk operations
are being queued by the thread that is associated with the process that
is really requesting the I/O. At that point, the disk queues are not
visible, so the I/O for positively niced processes is always slowed
down whether or not there is other activity on the disk.
On the issue of scaling HZ, I believe that the current scheme is
better than using a fixed quantum of time. As machines and I/O
subsystems get faster, the resolution on the clock also rises.
So, ten years from now we will be slowing things down for shorter
periods of time, but the proportional effect on the system will
be about the same as it is today. So, I view this as a feature
rather than a drawback. Hence this patch sticks with using HZ.
Sponsored by: DARPA & NAI Labs.
Reviewed by: Poul-Henning Kamp <phk@critter.freebsd.dk>
that use it. Specifically, vop_stdlock uses the lock pointed to by
vp->v_vnlock. By default, getnewvnode sets up vp->v_vnlock to
reference vp->v_lock. Filesystems that wish to use the default
do not need to allocate a lock at the front of their node structure
(as some still did) or do a lockinit. They can simply start using
vn_lock/VOP_UNLOCK. Filesystems that wish to manage their own locks,
but still use the vop_stdlock functions (such as nullfs) can simply
replace vp->v_vnlock with a pointer to the lock that they wish to
have used for the vnode. Such filesystems are responsible for
setting the vp->v_vnlock back to the default in their vop_reclaim
routine (e.g., vp->v_vnlock = &vp->v_lock).
In theory, this set of changes cleans up the existing filesystem
lock interface and should have no function change to the existing
locking scheme.
Sponsored by: DARPA & NAI Labs.
devfs VOP symlink creation by introducing a new entry point to determine
the label of the devfs_dirent prior to allocation of a vnode for the
symlink.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
on a process's pending signals, use the signal queue flattener,
ksiginfo_to_sigset_t, on the process, and on a local sigset_t, and then work
with that as needed.
gets signals operating based on a TailQ, and is good enough to run X11,
GNOME, and do job control. There are some intricate parts which could be
more refined to match the sigset_t versions, but those require further
evaluation of directions in which our signal system can expand and contract
to fit our needs.
After this has been in the tree for a while, I will make in kernel API
changes, most notably to trapsignal(9) and sendsig(9), to use ksiginfo
more robustly, such that we can actually pass information with our
(queued) signals to the userland. That will also result in using a
struct ksiginfo pointer, rather than a signal number, in a lot of
kern_sig.c, to refer to an individual pending signal queue member, but
right now there is no defined behaviour for such.
CODAFS is unfinished in this regard because the logic is unclear in
some places.
Sponsored by: New Gold Technology
Reviewed by: bde, tjr, jake [an older version, logic similar]
that a particular device driver is not Giant-challenged.
SPECFS will DROP_GIANT() ... PICKUP_GIANT() around calls to the
driver in question.
Notice that the interrupt path is not affected by this!
This does _NOT_ work for drivers accessed through cdevsw->d_strategy()
ie drivers for disk(-like), some tapes, maybe others.
/h/des/src/sys/coda/coda_venus.c: In function `venus_ioctl':
/h/des/src/sys/coda/coda_venus.c:277: warning: cast from pointer to integer of
different size
/h/des/src/sys/coda/coda_venus.c:292: warning: cast from pointer to integer of
different size
/h/des/src/sys/coda/coda_venus.c: In function `venus_readlink':
/h/des/src/sys/coda/coda_venus.c:380: warning: cast from pointer to integer of
different size
/h/des/src/sys/coda/coda_venus.c: In function `venus_readdir':
/h/des/src/sys/coda/coda_venus.c:637: warning: cast from pointer to integer of
different size
Submitted by: des-alpha-tinderbox
implement worthful VOP_BMAP() handler, so it expect the blkno not to be
changed by VOP_BMAP(). Otherwise, it'll have to find some tricky way to
determine if bp was VOP_BMAP()ed or not in VOP_STRATEGY().
PR: kern/42139
unlocked accesses to v_usecount.
- Lock access to the buf lists in the various sync routines. interlock
locking could be avoided almost entirely in leaf filesystems if the
fsync function had a generic helper.
constants VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS, USRSTACK and PS_STRINGS.
This is mainly so that they can be variable even for the native abi, based
on different machine types. Get stack protections from the sysentvec too.
This makes it trivial to map the stack non-executable for certain abis, on
machines that support it.