- em(4) igb(4) and lem(4)
- deprecate the igb device from kernel configurations
- create a symbolic link in /boot/kernel from if_em.ko to if_igb.ko
Devices tested:
- 82574L
- I218-LM
- 82546GB
- 82579LM
- I350
- I217
Please report problems to freebsd-net@freebsd.org
Partial review from jhb and suggestions on how to *not* brick folks who
originally would have lost their igbX device.
Submitted by: mmacy@nextbsd.org
MFC after: 2 weeks
Relnotes: yes
Sponsored by: Limelight Networks and Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D8299
to add actions that run when a TCP frame is sent or received on a TCP
session in the ESTABLISHED state. In the base tree, this functionality is
only used for the h_ertt module, which is used by the cc_cdg, cc_chd, cc_hd,
and cc_vegas congestion control modules.
Presently, we incur overhead to check for hooks each time a TCP frame is
sent or received on an ESTABLISHED TCP session.
This change adds a new compile-time option (TCP_HHOOK) to determine whether
to include the hhook(9) framework for TCP. To retain backwards
compatibility, I added the TCP_HHOOK option to every configuration file that
already defined "options INET". (Therefore, this patch introduces no
functional change. In order to see a functional difference, you need to
compile a custom kernel without the TCP_HHOOK option.) This change will
allow users to easily exclude this functionality from their kernel, should
they wish to do so.
Note that any users who use a custom kernel configuration and use one of the
congestion control modules listed above will need to add the TCP_HHOOK
option to their kernel configuration.
Reviewed by: rrs, lstewart, hiren (previous version), sjg (makefiles only)
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D8185
have chosen different (and more traditional) stateless/statuful
NAT64 as translation mechanism. Last non-trivial commits to both
faith(4) and faithd(8) happened more than 12 years ago, so I assume
it is time to drop RFC3142 in FreeBSD.
No objections from: net@
This is derived from the mps(4) driver, but it supports only the 12Gb
IT and IR hardware including the SAS 3004, SAS 3008 and SAS 3108.
Some notes about this driver:
o The 12Gb hardware can do "FastPath" I/O, and that capability is included in
this driver.
o WarpDrive functionality has been removed, since it isn't supported in
the 12Gb driver interface.
o The Scatter/Gather list handling code is significantly different between
the 6Gb and 12Gb hardware. The 12Gb boards support IEEE Scatter/Gather
lists.
Thanks to LSI for developing and testing this driver for FreeBSD.
share/man/man4/mpr.4:
mpr(4) man page.
sys/dev/mpr/*:
mpr(4) driver files.
sys/modules/Makefile,
sys/modules/mpr/Makefile:
Add a module Makefile for the mpr(4) driver.
sys/conf/files:
Add the mpr(4) driver.
sys/amd64/conf/GENERIC,
sys/i386/conf/GENERIC,
sys/mips/conf/OCTEON1,
sys/sparc64/conf/GENERIC:
Add the mpr(4) driver to all config files that currently
have the mps(4) driver.
sys/ia64/conf/GENERIC:
Add the mps(4) and mpr(4) drivers to the ia64 GENERIC
config file.
sys/i386/conf/XEN:
Exclude the mpr module from building here.
Submitted by: Steve McConnell <Stephen.McConnell@lsi.com>
MFC after: 3 days
Tested by: Chris Reeves <chrisr@spectralogic.com>
Sponsored by: LSI, Spectra Logic
Relnotes: LSI 12Gb SAS driver mpr(4) added
* Make Yarrow an optional kernel component -- enabled by "YARROW_RNG" option.
The files sha2.c, hash.c, randomdev_soft.c and yarrow.c comprise yarrow.
* random(4) device doesn't really depend on rijndael-*. Yarrow, however, does.
* Add random_adaptors.[ch] which is basically a store of random_adaptor's.
random_adaptor is basically an adapter that plugs in to random(4).
random_adaptor can only be plugged in to random(4) very early in bootup.
Unplugging random_adaptor from random(4) is not supported, and is probably a
bad idea anyway, due to potential loss of entropy pools.
We currently have 3 random_adaptors:
+ yarrow
+ rdrand (ivy.c)
+ nehemeiah
* Remove platform dependent logic from probe.c, and move it into
corresponding registration routines of each random_adaptor provider.
probe.c doesn't do anything other than picking a specific random_adaptor
from a list of registered ones.
* If the kernel doesn't have any random_adaptor adapters present then the
creation of /dev/random is postponed until next random_adaptor is kldload'ed.
* Fix randomdev_soft.c to refer to its own random_adaptor, instead of a
system wide one.
Submitted by: arthurmesh@gmail.com, obrien
Obtained from: Juniper Networks
Reviewed by: obrien
most kernels before FreeBSD 9.0. Remove such modules and respective kernel
options: atadisk, ataraid, atapicd, atapifd, atapist, atapicam. Remove the
atacontrol utility and some man pages. Remove useless now options ATA_CAM.
No objections: current@, stable@
MFC after: never
reducing the number of runtime checks done by the SDK code.
o) Group board/CPU information at early startup by subject matter, so that e.g.
CPU information is adjacent to CPU information and board information is
adjacent to board information.
As of FreeBSD 8, this driver should not be used. Applications that use
posix_openpt(2) and openpty(3) use the pts(4) that is built into the
kernel unconditionally. If it turns out high profile depend on the
pty(4) module anyway, I'd rather get those fixed. So please report any
issues to me.
The pty(4) module is still available as a kernel module of course, so a
simple `kldload pty' can be used to run old-style pseudo-terminals.
required for the ABI the kernel is being built for.
XXX This is implemented in a kind-of nasty way that involves including source
files, but it's still an improvement.
o) Retire ISA_* options since they're unused and were always wrong.
device in /dev/ create symbolic link with adY name, trying to mimic old ATA
numbering. Imitation is not complete, but should be enough in most cases to
mount file systems without touching /etc/fstab.
- To know what behavior to mimic, restore ATA_STATIC_ID option in cases
where it was present before.
- Add some more details to UPDATING.
stack. It means that all legacy ATA drivers are disabled and replaced by
respective CAM drivers. If you are using ATA device names in /etc/fstab or
other places, make sure to update them respectively (adX -> adaY,
acdX -> cdY, afdX -> daY, astX -> saY, where 'Y's are the sequential
numbers for each type in order of detection, unless configured otherwise
with tunables, see cam(4)).
ataraid(4) functionality is now supported by the RAID GEOM class.
To use it you can load geom_raid kernel module and use graid(8) tool
for management. Instead of /dev/arX device names, use /dev/raid/rX.
Introduce the AHB glue for Atheros embedded systems. Right now it's
hard-coded for the AR9130 chip whose support isn't yet in this HAL;
it'll be added in a subsequent commit.
Kernel configuration files now need both 'ath' and 'ath_pci' devices; both
modules need to be loaded for the ath device to work.
configurations and make it opt-in for those who want it. LINT will
still build it.
While it may be a perfect win in some scenarios, it still troubles users
(see PRs) in general cases. In addition we are still allocating resources
even if disabled by sysctl and still leak arp/nd6 entries in case of
interface destruction.
Discussed with: qingli (2010-11-24, just never executed)
Discussed with: juli (OCTEON1)
PR: kern/148018, kern/155604, kern/144917, kern/146792
MFC after: 2 weeks
o) Add 'octm', a trivial driver for the 10/100 management ports found on some
Octeon systems.
o) Make the Simple Executive's management port helper routines compile on
FreeBSD (namely by not doing math on void pointers.)
o) Add a cvmx_mgmt_port_sendm routine to the Simple Executive to send an mbuf
so there is only one copy in the transmit path, rather than having to first
copy the mbuf to an intermediate buffer and then copy that to the Simple
Executive's transmit ring.
o) Properly work out MII addresses of management ports on the Lanner MR-730.
XXX The MR-730 also needs some patches to the MII read/write routines, but
this is sufficient for now. Media detection will be fixed in the future
when I can spend more time reading the vendor-supplied patches.
mipsel' or 'machine mips mipseb' into the config file (with a few 64's
tossed in for good measure). This will let us build the proper
kernels with different worlds as part of make universe.
using miibus, since for some devices that use multiple addresses on the bus,
going through miibus may be unclear, and for devices that are not standard
MII PHYs, miibus may throw a fit, necessitating complicated interfaces to
fake the interface that it expects during probe/attach.
o) Make the mv88e61xx SMI interface in octe attach a PHY directly and fix some
mistakes in the code that resulted from trying too hard to present a nice
interface to miibus.
o) Add a PHY driver for the mv88e61xx. If attached (it is optional in kernel
compiles so the default behavior of having a dumb switch is preserved) it
will place the switch in a VLAN-tagging mode such that each physical port
has a VLAN associated with it and interfaces for the VLANs can be created to
address or bridge between them.
XXX It would be nice for this to be part of a single module including the
SMI interface, and for it to fit into a generic switch configuration
framework and for it to use DSA rather than VLANs, but this is a start
and gives some sense of the parameters of such frameworks that are not
currently present in FreeBSD. In lieu of a switch configuration
interface, per-port media status and VLAN settings are in a sysctl tree.
XXX There may be some minor nits remaining in the handling of broadcast,
multicast and unknown destination traffic. It would also be nice to go
through and replace the few remaining magic numbers with macros at some
point in the future.
XXX This has only been tested with the MV88E6161, but it should work with
minimal or no modification on related switches, so support for probing
them was included.
Thanks to Pat Saavedra of TELoIP and Rafal Jaworowski of Semihalf for their
assistance in understanding the switch chipset.
library:
o) Increase inline unit / large function growth limits for MIPS to accommodate
the needs of the Simple Executive, which uses a shocking amount of inlining.
o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and
the Octeon SoC.
o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific
board numbers, specifically to support the MR320.
o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd,
which improperly uses an evaluation board's board number and breaks board
detection at runtime. This board is sold by Portwell as the CAM-0100.
o) Add support for the RTC available on some Octeon boards.
o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO
ports can not work unless building for n64.
o) Clean up the CompactFlash driver to use Simple Executive macros and
structures where possible (it would be advisable to use the Simple Executive
API to set the PIO mode, too, but that is not done presently.) Also use
structures from FreeBSD's ATA layer rather than structures copied from
Linux.
o) Print available Octeon SoC features on boot.
o) Add support for the Octeon timecounter.
o) Use the Simple Executive's routines rather than local copies for doing reads
and writes to 64-bit addresses and use its macros for various device
addresses rather than using local copies.
o) Rename octeon_board_real to octeon_is_simulation to reduce differences with
Cavium-provided code originally written for Linux. Also make it use the
same simplified test that the Simple Executive and Linux both use rather
than our complex one.
o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus
to use normal interrupt allocation and setup routines.
o) Use the Simple Executive's bootmem facility to allocate physical memory for
the kernel, rather than assuming we know which addresses we can steal.
NB: This may reduce the amount of RAM the kernel reports you as having if
you are leaving large temporary allocations made by U-Boot allocated
when starting FreeBSD.
o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes
Ethernet interface naming from rgmxN to octeN. The new driver has vast
improvements over the old one, both in performance and functionality, but
does still have some features which have not been ported entirely and there
may be unimplemented code that can be hit in everyday use. I will make
every effort to correct those as they are reported.
o) Support loading the kernel on non-contiguous cores.
o) Add very conservative support for harvesting randomness from the Octeon
random number device.
o) Turn SMP on by default.
o) Clean up the style of the Octeon kernel configurations a little and make
them compile with -march=octeon.
o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple
Executive.
o) Modify the Simple Executive to build on FreeBSD and to build without
executive-config.h or cvmx-config.h. In the future we may want to
revert part of these changes and supply executive-config.h and
cvmx-config.h and access to the options contained in those files via
kernel configuration files.
o) Modify the Simple Executive USB routines to support getting and setting
of the USB PID.
the 'debugging' section of any HEAD kernel and enable for the mainstream
ones, excluding the embedded architectures.
It may, of course, enabled on a case-by-case basis.
Sponsored by: Sandvine Incorporated
Requested by: emaste
Discussed with: kib