ISDN4BSD is the work of our brand-new comitter: Hellmuth Michaelis,
who has done a tremendous amount of work to bring us this far.
There are still some outstanding issues and files to bring into
the tree, and for now it will be needed to pick up all the extra
docs from the isdn4bsd release.
It is probably also a very good idea to subscribe to the isdn@freebsd.org
mailing list before you try this out.
These files correspond to release "beta Version 0.70.00 / December
1998" from Hellmuth.
that the generated files are generated before any of the object files.
Also minor cleanup of dependencies in conf/files that I bogusly added
before.
This should fix the requirement that make depend be done starting from
a clean config directory. If you don't have a clean directory, make
depend is still required if you want the proper .o's to be recompiled.
Reviewed by: bde
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.
RealTek 8129/8139 chipset like I've been threatening. Update kernel
configs, userconfig.c, relnotes and sysinstall. No man page yet;
comming soon.
I consider this driver stable enough that I want to give it some
exposure in -current.
===================================
HARP | Host ATM Research Platform
===================================
HARP 3
What is this stuff?
-------------------
The Advanced Networking Group (ANG) at the Minnesota Supercomputer Center,
Inc. (MSCI), as part of its work on the MAGIC Gigabit Testbed, developed
the Host ATM Research Platform (HARP) software, which allows IP hosts to
communicate over ATM networks using standard protocols. It is intended to
be a high-quality platform for IP/ATM research.
HARP provides a way for IP hosts to connect to ATM networks. It supports
standard methods of communication using IP over ATM. A host's standard IP
software sends and receives datagrams via a HARP ATM interface. HARP provides
functionality similar to (and typically replaces) vendor-provided ATM device
driver software.
HARP includes full source code, making it possible for researchers to
experiment with different approaches to running IP over ATM. HARP is
self-contained; it requires no other licenses or commercial software packages.
HARP implements support for the IETF Classical IP model for using IP over ATM
networks, including:
o IETF ATMARP address resolution client
o IETF ATMARP address resolution server
o IETF SCSP/ATMARP server
o UNI 3.1 and 3.0 signalling protocols
o Fore Systems's SPANS signalling protocol
What's supported
----------------
The following are supported by HARP 3:
o ATM Host Interfaces
- FORE Systems, Inc. SBA-200 and SBA-200E ATM SBus Adapters
- FORE Systems, Inc. PCA-200E ATM PCI Adapters
- Efficient Networks, Inc. ENI-155p ATM PCI Adapters
o ATM Signalling Protocols
- The ATM Forum UNI 3.1 signalling protocol
- The ATM Forum UNI 3.0 signalling protocol
- The ATM Forum ILMI address registration
- FORE Systems's proprietary SPANS signalling protocol
- Permanent Virtual Channels (PVCs)
o IETF "Classical IP and ARP over ATM" model
- RFC 1483, "Multiprotocol Encapsulation over ATM Adaptation Layer 5"
- RFC 1577, "Classical IP and ARP over ATM"
- RFC 1626, "Default IP MTU for use over ATM AAL5"
- RFC 1755, "ATM Signaling Support for IP over ATM"
- RFC 2225, "Classical IP and ARP over ATM"
- RFC 2334, "Server Cache Synchronization Protocol (SCSP)"
- Internet Draft draft-ietf-ion-scsp-atmarp-00.txt,
"A Distributed ATMARP Service Using SCSP"
o ATM Sockets interface
- The file atm-sockets.txt contains further information
What's not supported
--------------------
The following major features of the above list are not currently supported:
o UNI point-to-multipoint support
o Driver support for Traffic Control/Quality of Service
o SPANS multicast and MPP support
o SPANS signalling using Efficient adapters
This software was developed under the sponsorship of the Defense Advanced
Research Projects Agency (DARPA).
Reviewed (lightly) by: phk
Submitted by: Network Computing Services, Inc.
object format of the executable being dumped. This is the first
step toward producing ELF core dumps in the proper format. I will
commit the code to generate the ELF core dumps Real Soon Now. In
the meantime, ELF executables won't dump core at all. That is
probably no less useful than dumping a.out-style core dumps as they
have done until now.
Submitted by: Alex <garbanzo@hooked.net> (with very minor changes by me)
stability now. ALso modify /sys/conf/files, /sys/i386/conf/GENERIC
and /sys/i386/conf/LINT to add entries for the XL driver. Deactivate
support for the XL adapters in the vortex driver. LAstly, add a man
page.
(Also added an MLINKS entry for the ThunderLAN man page which I forgot
previously.)
- ppbus now supports PLIP via the if_plip driver
- ieee1284 infrastructure added, including parallel-port PnP
- port microsequencer added, for scripting the sort of port I/O
that is common with parallel devices without endless calls up and down
through the driver structure.
- improved bus ownership behaviour among the ppbus-using drivers.
- improved I/O chipset feature detection
The vpo driver is now implemented using the microsequencer, leading to
some performance improvements as well as providing an extensive example
of its use.
Reviewed by: msmith
Submitted by: Nicolas Souchu <Nicolas.Souchu@prism.uvsq.fr>
* Eliminate bus_t and make it possible for all devices to have
attached children.
* Support dynamically extendable interfaces for drivers to replace
both the function pointers in driver_t and bus_ops_t (which has been
removed entirely. Two system defined interfaces have been defined,
'device' which is mandatory for all devices and 'bus' which is
recommended for all devices which support attached children.
* In addition, the alpha port defines two simple interfaces 'clock'
for attaching various real time clocks to the system and 'mcclock'
for the many different variations of mc146818 clocks which can be
attached to different alpha platforms. This eliminates two more
function pointer tables in favour of the generic method dispatch
system provided by the device framework.
Future device interfaces may include:
* cdev and bdev interfaces for devfs to use in replacement for specfs
and the fixed interfaces bdevsw and cdevsw.
* scsi interface to replace struct scsi_adapter (not sure how this
works in CAM but I imagine there is something similar there).
* various tailored interfaces for different bus types such as pci,
isa, pccard etc.
work in progress and has never booted a real machine. Initial
development and testing was done using SimOS (see
http://simos.stanford.edu for details). On the SimOS simulator, this
port successfully reaches single-user mode and has been tested with
loads as high as one copy of /bin/ls :-).
Obtained from: partly from NetBSD/alpha
NetBSD, ported to FreeBSD by Pierre Beyssac <pb@fasterix.freenix.org> and
minorly tweaked by me.
This is a standard part of FreeBSD, but must be enabled with:
"sysctl -w net.inet.ip.fastforwarding=1" ...and of course forwarding must
also be enabled. This should probably be modified to use the zone
allocator for speed and space efficiency. The current algorithm also
appears to lose if the number of active paths exceeds IPFLOW_MAX (256),
in which case it wastes lots of time trying to figure out which cache
entry to drop.