For now, the only module implement is 'sample', and that's only partially
implemented. The main issue here with reusing this structure in userland
is that it uses 'rix' everywhere, which requires the userland code to
have access to the current HAL rate table.
For now, this is a very large work in progress.
Specific details:
* The rate control information is per-node at the moment and wrapped
in a TLV, to ease parsing and backwards compatibility.
* .. but so I can be slack for now, the userland statistics are just
a copy of the kernel-land sample node state.
* However, for now use a temporary copy and change the rix entries
to dot11rate entries to make it slightly easier to eyeball.
Problems:
* The actual rate information table is unfortunately indexed by rix
and it doesn't contain a rate code. So the userland side of this
currently has no way to extract out a mapping.
TODO:
* Add a TLV payload to dump out the rate control table mapping so
'rix' can be turned into a dot11 / MCS rate.
* .. then remove the temporary copy.
data introduced in r236061. Using that flag doesn't make that much
sense on this case as the DMA maps using it are also created during
sym_pci_attach(). Moreover, due to the maxsegsz parameter used, doing
so may exhaust the bounce pages pool on architectures requiring
bounce pages. [1]
While at it, use a slightly more appropriate maxsegsz parameter.
PR: 169526
Submitted by: Mike Watters [1]
MFC after: 3 days
TX descriptor link pointers.
This is required for the AR93xx and later chipsets.
The RX path is slightly different - the legacy RX path directly
accesses ath_desc->ds_link for now, however this isn't at all done
for EDMA (FIFO) RX.
Now, for those performing a little software archeology here:
This is all a bit sub-optimal. "struct ath_desc" is only really relevant
for the pre-AR93xx NICs - where ds_link and ds_data is always in the
same location.
The AR93xx and later NICs have different descriptor layouts altogether.
Now, for AR93xx and later NICs, you should never directly reference
ds_link and ds_data, as:
* the RX descriptors don't have either - the data is _after_ the RX
descriptor. They're just one large buffer. There's also no need for
a per-descriptor RX buffer size as they're all fixed sizes.
* the TX descriptors have 4 buffer and 4 length fields _and_ a link
pointer. Each frame takes up one TX FIFO pointer, but it can contain
multiple subframes (either multiple frames in a buffer, and/or
multiple frames in an aggregate/RIFS burst.)
* .. so, when TX frames are queued to a hardware queue, the link
pointer is ONLY for buffers in that frame/aggregate. The next frame
starts in a new FIFO pointer.
* Finally, descriptor completion status is in a different ring.
I'll write something up about that when its time to do so.
This was inspired by Linux ath9k and the reference driver but is a
reimplementation.
Obtained from: Linux ath9k, Qualcomm Atheros
The DMA FIFO chips (AR93xx and later) differ slightly to th elegacy
chips:
* The RX DMA descriptors don't have a ds_link field;
* The TX DMA descriptors have a ds_link field however at a different
offset.
This is a reimplementation based on what the reference driver and ath9k
does.
A subsequent commit will enable it in the TX and beacon paths.
Obtained from: Linux ath9k, Qualcomm Atheros
The AR9003 series NICs implement a separate RX error to signal that a
Keycache miss occured. The earlier NICs would not set the key index
valid bit.
I'll dig into the difference between "no key index bit set" and "keycache
miss".
* wrap the RX proc calls in the RX refcount;
* call the DFS checking, fast frames staging and TX rescheduling if
required.
TODO:
* figure out if I can just make "do TX rescheduling" mean "schedule
TX taskqueue" ?
with fresh descriptors, before handling the frames.
Wrap it all in the RX locks.
Since the FIFO is very shallow (16 for HP, 128 for LP) it needs to be
drained and replenished very quickly. Ideally, I'll eventually move this
RX FIFO drain/fill into the interrupt handler, only deferring the actual
frame completion.
I was setting up the RX EDMA buffer to be 4096 bytes rather than the
RX data buffer portion. The hardware was likely getting very confused
and DMAing descriptor portions into places it shouldn't, leading to
memory corruption and occasional panics.
Whilst here, don't bother allocating descriptors for the RX EDMA case.
We don't use those descriptors. Instead, just allocate ath_buf entries.
... from a user-set persistent limit on the said level.
Allow to set the user-imposed limit below current deepest available level
as the available levels may be dynamically changed by ACPI platform
in both directions.
Allow "Cmax" as an input value for cx_lowest sysctls to mean that there
is not limit and OS can use all available C-states.
Retire global cpu_cx_count as it no longer serves any meaningful
purpose.
Reviewed by: jhb, gianni, sbruno
Tested by: sbruno, Vitaly Magerya <vmagerya@gmail.com>
MFC after: 2 weeks
the upper levels notice. Otherwise we see commands silently failing leading
to data corruption. This mirrors dadone()
Submitted by: Andrew Boyer aboyer@averesystems.com
Reviewed by: scottl@freebsd.org
MFC after: 2 weeks
PCI:
- Properly handle interrupt fallback from MSIX to MSI to legacy.
The host may not have sufficient resources to support MSIX,
so we must be able to fallback to legacy interrupts.
- Add interface to get the (sub) vendor and device IDs.
- Rename flags to VTPCI_FLAG_* like other VirtIO drivers.
Block:
- No longer allocate vtblk_requests from separate UMA zone.
malloc(9) from M_DEVBUF is sufficient. Assert segment counts
at allocation.
- More verbose error and debug messages.
Network:
- Remove stray write once variable.
Virtqueue:
- Shuffle code around in preparation of converting the mb()s to
the appropriate atomic(9) operations.
- Only walk the descriptor chain when freeing if INVARIANTS is
defined since the result is only KASSERT()ed.
Submitted by: Bryan Venteicher (bryanv@daemoninthecloset.org)
the FIFO.
I still see some corner cases where no RX occurs when it should be
occuring. It's quite possible that there's a subtle race condition
somewhere; or maybe I'm not programming the RX queues right.
There's also no locking here yet, so any reset/configuration path
state change (ie, enabling/disabling receive from the ioctl, net80211
taskqueue, etc) could quite possibly confuse things.
* For now, kickpcu should hopefully just do nothing - the PCU doesn't need
'kicking' for Osprey and later NICs. The PCU will just restart once
the next FIFO entry is pushed in.
* Teach "proc" about "dosched", so it can be used to just flush the
FIFO contents without adding new FIFO entries.
* .. and now, implement the RX "flush" routine.
* Re-initialise the FIFO contents if the FIFO is empty (the DP is NULL.)
When PCU RX is disabled (ie, writing RX_D to the RX configuration
register) then the FIFO will be completely emptied. If the software FIFO
is full, then no further descriptors are pushed into the FIFO and
things stall.
This all requires much, much more thorough stress testing.
This is inspired by ath9k and the reference driver, but it's a new
implementation of the RX FIFO handling.
This has some issues - notably the FIFO needs to be reprogrammed when
the chip is reset.
* Add a couple of RX errors;
* Add the spectral scan PHY error code;
* extend the RX flags to be a 16 bit field, rather than an 8 bit field;
* Add a new RX flag.
Obtained from: Qualcomm Atheros
The AR93xx and later chips support two RX FIFO queues - a high and low
priority queue.
For legacy chips, just assume the queues are high priority.
This is inspired by the reference driver but is a reimplementation of
the API and code.
AR93xx receive descriptors.
This isn't entirely complete - the AR93xx and later descriptors
don't have a link/buffer pointer; the descriptor contents just
start.
setting in the igb and em driver. This was necessitated by
a shared code change that I was given late in the game, a data
type changed from bool to int, in the last update I dealt with
it by a cast, but it was pointed out (thanks jhb) that there
was a potential problem with this. John suggested this safer
approach, and it is fine with me...
MFC after:2 days (to catch the 9.1 update)
although by default only C1 is enabled (cx_lowest=0) and enabling deeper
states goes through acpi_cpu_set_cx_lowest which re-evaluates cpu_non_c3
MFC after: 2 weeks
cpu_non_c3 is already evaluated in acpi_cpu_cx_cst and in
acpi_cpu_set_cx_lowest.
Besides acpi_cpu_cx_list is not protected by any locking.
As a result also move setting of cpu_can_deep_sleep to more appropriate
places.
MFC after: 2 weeks
Don't use Maxmem when the amount of memory is meant. Use realmem instead.
Maxmem is not only a MD variable, it represents the highest physical memory
address in use. On systems where memory is sparsely layed-out the highest
memory address and the amount of memory are not interchangeable. Scaling the
AGP aperture based on the actual amount of memory (= realmem) rather than
the available memory (= physmem) makes sure there's consistent behaviour
across architectures.
agp_i810.c:
While arguably the use of Maxmem can be considered correct, replace its use
with realmem anyway. agp_i810.c is specific to amd64, i386 & pc98, which
have a dense physical memory layout. Avoiding Maxmem here is done with an
eye on copy-n-paste behaviour in general and to avoid confusion caused by
using realmem in agp.c and Maxmem in agp_i810.c.
In both cases, remove the inclusion of md_var.h
"Reserved by Microsoft" in the standard PNP ID table, but has been seen
in the wild on at least one laptop.
PR: kern/169571
Submitted by: Matthias Apitz guru unixarea de
MFC after: 3 days
- Add a couple of new devices
- Flow control changes in shared and core code
- Bug fix to Flow Director for 82598
- Shared code sync to internal with required core change
Thanks to those helping in the testing and improvements to this driver!
MFC after:5 days
shared code update and small changes in core required
Add support for new i210/i211 devices
Improve queue calculation based on mac type
MFC after:5 days
The new driver changed the size of the mfi_dcmd_frame structure in such a
way that a MFI_IOC_PASSTHRU ioctl from an old amd64 binary is treated as an
MFI_IOC_PASSTHRU32 ioctl in the new driver. As a result, the user pointer
is treated as the buffer length. mfi_user_command() doesn't have a bounds
check on the buffer length, so it passes a really big value to malloc()
which panics when it tries to exhaust the kmem_map. Fix this two ways:
- Only honor MFI_IOC_PASSTHRU32 if the binary has the SV_ILP32 flag set,
otherwise treat it as an unknown ioctl.
- Add a bounds check on the buffer length passed by the user. For now
it fails any user attempts to use a buffer larger than 1MB.
While here, fix a few other nits:
- Remove an unnecessary check for a NULL return from malloc(M_WAITOK).
- Use the ENOTTY errno for invalid ioctl commands instead of ENOENT.
MFC after: 3 days
The RX EDMA support requires a modified approach to the RX descriptor
handling.
Specifically:
* There's now two RX queues - high and low priority;
* The RX queues are implemented as FIFOs; they're now an array of pointers
to buffers;
* .. and the RX buffer and descriptor are in the same "buffer", rather than
being separate.
So to that end, this commit abstracts out most of the RX related functions
from the bulk of the driver. Notably, the RX DMA/buffer allocation isn't
updated, primarily because I haven't yet fleshed out what it should look
like.
Whilst I'm here, create a set of matching but mostly unimplemented EDMA
stubs.
Tested:
* AR9280, station mode
TODO:
* Thorough AP and other mode testing for non-EDMA chips;
* Figure out how to allocate RX buffers suitable for RX EDMA, including
correctly setting the mbuf length to compensate for the RX descriptor
and completion status area.
This driver does not yet handle multiple chip selects properly.
Note that the NAND infrastructure does not perform full page
reads or writes, which means that this driver cannot make use
of the hardware ECC that is otherwise present.
of interrupts of direct children. Have the bus_config_intr and
bus_teardown_intr methods implemented by bus_generic_config_intr and
bus_generic_teardown_intr (resp) as we don't need to do anything
special outselves.
This removes all the ``#ifdef $arch'' code that was there because powerpc
didn't have a proper nexus and people tend to copy and paste stuff.
names to shorten them. PulseAudio reported to have problems with names
longer then 63 chars and at least in XMMS long names are inconvinient.
Reported by: hselasky
MFC after: 3 days
Adjust power_profile script to handle the new world order as well.
Some vendors are opting out of a C2 state and only defining C1 & C3. This
leads the acpi_cpu display to indicate that the machine supports C1 & C2
which is caused by the (mis)use of the index of the cx_state array as the
ACPI_STATE_CX value.
e.g. the code was pretending that cx_state[i] would
always convert to i by subtracting 1.
cx_state[2] == ACPI_STATE_C3
cx_state[1] == ACPI_STATE_C2
cx_state[0] == ACPI_STATE_C1
however, on certain machines this would lead to
cx_state[1] == ACPI_STATE_C3
cx_state[0] == ACPI_STATE_C1
This didn't break anything but led to a display of:
* dev.cpu.0.cx_supported: C1/1 C2/96
Instead of
* dev.cpu.0.cx_supported: C1/1 C3/96
MFC after: 2 weeks
Asus laptops. It is alike to acpi_asus(4), but uses WMI interface instead
of separate ACPI device.
On Asus EeePC T101MT netbook it allows to handle hotkeys and on/off WLAN,
Bluetooth, LCD backlight, camera, cardreader and touchpad.
On Asus UX31A ultrabook it allows to handle hotkeys, on/off WLAN, Bluetooth,
Wireless LED, control keyboard backlight brightness, monitor temperature
and fan speed. LCD brightness control doesn't work now for unknown reason,
possibly requiring some video card initialization.
Sponsored by: iXsystems, Inc.
as an EDMA check function.
For the AR9003 and later NICs, different TX/RX DMA and descriptor handling
code will be conditional on the EDMA check.
Obtained from: Qualcomm Atheros
* Add a new ANI variable, for AR9003 and later chips;
* The AR9003 and later series chips support two RX queues now, so start
down the road of supporting that;
* Add some new TX queue types - uAPSD is possible on earlier chips,
but PAPRD is relevant to AR9003 and later.
Obtained from: Qualcomm Atheros, Linux ath9k
On systems with HZ=100 it caused Intel eDP video output initialization
(and Xorg startup) to take several minutes instead of several seconds.
Reviewed by: kib
MFC after: 3 days
14.00.00.01-fbsd.
Their description of the changes is as follows:
1. Copyright contents has been changed in all respective .c
and .h files
2. Support for WRITE12 and READ12 for direct-io (warpdrive only)
has been added.
3. Driver has added checks to see if Drive has READ_CAP_16
support before sending it down to the device.
If SPC3_SID_PROTECT flag is set in the inquiry data, the
device supports protection information, and must support
the 16 byte read capacity command, otherwise continue without
sending read cap 16. This will optimize driver performance,
since it will not send READ_CAP_16 to the drive which does
not have support of READ_CAP_16.
4. With new approach, "MPTIOCTL_RESET_ADAPTER" IOCTL will not
use DELAY() which is busy loop implementation.
It will use <msleep> (Better way to sleep without busy
loop). Also from the HBA reset code path and some other
places, DELAY() is replaced with msleep() or "pause()",
which is based on sleep/wakeup style calls. Driver use
msleep()/pause() instead of DELAY based on CAN_SLEEP/NO_SLEEP
flags to avoid busy loop which is not required all the
time.e.a
a. While driver is getting loaded, driver calls most of the
commands with NO_SLEEP.
b. When Driver is functional and it needs Reinit of HBA,
CAN_SLEEP flag is used.
5. <mpslsi> driver is not Endian safe. It will not work on Big
Endian machines like Sparc and PowerPC platforms because it
assumes it is running on a Little Endian machine.
Driver code is modified such way that it does not assume CPU
arch is Little Endian.
a. All places where Driver interacts from HBA to Host, it
converts Little Endian format to CPU format.
b. All places where Driver interacts from Host to HBA, it
converts CPU format to Little Endian.
6. Findout memory leaks in FreeBSD Driver and resolve those,
such as memory leak in targ's luns creation/deletion.
Also added additional checks to see memory allocation
success/fail.
7. Add loginfo prints as debug message, i.e. When FW sends any
loginfo, Driver should print those as debug message.
This will help for debugging purpose.
8. There is possibility to get config request timeout. Current
driver is able to detect config request timetout, but it does
not do anything on config_request timeout. Driver should
call mps_reinit() if any request_poll (which is called as
part of config_request) is time out.
9. cdb length check is required for 32 byte CDB. Add correct mpi
control value for 32 bit CDB as below while submitting SCSI IO
Request to controller.
mpi_control |= 4 << MPI2_SCSIIO_CONTROL_ADDCDBLEN_SHIFT;
10. Check the actual status of Message unit reset
(mps_message_unit_reset).Previously FreeBSD Driver just writes
MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET and never check the ack
(it just wait for 50 millisecond). So, Driver now check the
status of "MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET" after writing
it to the FW.
Now it also checking for whether doorbell ack uses msleep with
proper sleep flags, instead of <DELAY>.
11. Previously CAM does not detect Multi-Lun Devices. In order to
detect Multi-Lun Devices by CAM the driver needs following change
set:
a. There is "max_lun" field which Driver need to set based on
hw/fw support. Currently LSI released driver does not set
this field.
b. Default of "max_lun" should not be 0 in OS, but it is
currently set to 0 in CAM layer.
c. Export max_lun capacity to 255
12. Driver will not reset target info after port enable complete and
also do Device removal when Device remove from FW. The detail
description is as follows
a. When Driver receive WD PD add events, it will add all
information in driver local data structure.
b. Only for WD, we have below checks after port enable
completes, where driver clear off all information retrieved
at #1.
if ((sc->WD_available &&
(sc->WD_hide_expose == MPS_WD_HIDE_ALWAYS)) ||
(sc->WD_valid_config && (sc->WD_hide_expose ==
MPS_WD_HIDE_IF_VOLUME)) {
// clear off target data structure.
}
It is mainly not to attach PDs to OS.
FreeBSD does bus rescan as older Parallel scsi style. So Driver
needs to handle which Drive is visible to OS. That is a reason
we have to clear off targ information for PDs.
Again, above logic was implemented long time ago. Similar concept
we have for non-wd also. For that, LSI have introduced different
logic to hide PDs.
Eventually, because of above gap, when Phy goes offline, we
observe below failure. That is what Driver is not doing complete
removal of device with FW. (which was pointed by Scott)
Apr 5 02:39:24 Freebsd7 kernel: mpslsi0: mpssas_prepare_remove
Apr 5 02:39:24 Freebsd7 kernel: mpssas_prepare_remove 497 : invalid handle 0xe
Now Driver will not reset target info after port enable complete
and also will do Device removal when Device remove from FW.
13. Returning "CAM_SEL_TIMEOUT" instead of "CAM_TID_INVALID"
error code on request to the Target IDs that have no devices
conected at that moment. As if "CAM_TID_INVALID" error code
is returned to the CAM Layaer then it results in a huge chain
of errors in verbose kernel messages on boot and every
hot-plug event.
Submitted by: Sreekanth Reddy <Sreekanth.Reddy@lsi.com>
MFC after: 3 days
the request up the tree in order to be on the safe side. Growing windows
in this case would mean to switch resources to positive decoding and
it's unclear how to correctly handle this. At least with ALi/ULi M5249
PCI-PCI bridges, this also just doesn't work out of the box.
Reviewed by: jhb
MFC after: 3 days
queue is empty or the firmware will go nuts.
PR: kern/167806
Tested by: osa@, Brandon Gooch (earlier version),
Bojan Petrovic (earlier version)
MFC after: 3 days
the TX queue is empty, there won't be a TX done notification, effectly
resulting in an mbuf leak. The correct way to handle this is to free
up mbufs on both BA and TX done notifications up to the last sent seqno.
Tested by: osa@
MFC after: 3 days
with AMPDU aggregate delimiters.
If there's an OFDM restart during an aggregate, the hardware ACKs
the previous frame, but communicates the RXed frame to the hardware
as having had CRC delimiter error + OFDM_RESTART phy error.
The frame however didn't have a CRC error and since the hardware ACKed
the aggregate to the sender, it thinks the frame was received.
Since I have no idea how often this occurs in the real world, add a
debug statement so trigger whenever this occurs. I'd appreciate an
email if someone finds this particular situation is triggered.
The Linux ath9k btcoex code is based off of this code.
Note this doesn't actually implement functional btcoex; there's some
driver glue and a whole lot of verification that is required.
On the other hand, I do have the AR9285+BT and AR9287+BT NICs which
this code supports..
Obtained from: Qualcomm Atheros, Linux ath9k
to attach to target capable HBAs that implement the old immediate
notify (XPT_IMMED_NOTIFY) and notify acknowledge (XPT_NOTIFY_ACK)
CCBs. The new API has been in place since SVN change 196008 in
2009.
The solution is two-fold: fix CTL to handle the responses from the
HBAs, and convert the HBA drivers in question to use the new API.
These drivers have not been tested with CTL, so how well they will
interoperate with CTL is unknown.
scsi_target.c: Update the userland target example code to use the
new immediate notify API.
scsi_ctl.c: Detect when an immediate notify CCB is returned
with CAM_REQ_INVALID or CAM_PROVIDE_FAIL status,
and just free it.
Fix a duplicate assignment.
aic79xx.c,
aic79xx_osm.c: Update the aic79xx driver to use the new API.
Target mode is not enabled on for this driver, so
the changes will have no practical effect.
aic7xxx.c,
aic7xxx_osm.c: Update the aic7xxx driver to use the new API.
sbp_targ.c: Update the firewire target code to work with the
new API.
mpt_cam.c: Update the mpt(4) driver to work with the new API.
Target mode is only enabled for Fibre Channel
mpt(4) devices.
MFC after: 3 days
exported via PCI passthrough.
- Do not check for a specific physical function (PF) before claiming a device.
Different PFs have different device-ids so this check is redundant anyway.
- Obtain the PF# from the WHOAMI register instead of pci_get_function().
- Setup the memory windows using the real BAR0 address, not what the VM says it
is.
Obtained from: Chelsio Communications
not by some hint setting. Do more preparations for FC-Tape.
Clean up resource counting for 24XX or later chipsets so
we find out after EXEC_FIRMWARE what is actually supported.
Set target mode exchange count based upon whether or not
we are supporting simultaneous target/initiator mode. Clean
up some old (pre-24XX) xfwoption and zfwoption issues.
Sponsored by: Spectralogic
MFC after: 3 days
the assumption that ath_softc doesn't change size based on build time
configuration.
I picked up on this because suddenly radar stuff didn't work; and
although the ath_dfs code was setting sc_dodfs=1, the main ath driver
saw sc_dodfs=0.
So for now, include opt_ath.h in driver source files. This seems like
the sane thing to do anyway.
I'll have to do a pass over the code at some later stage and turn
the radiotap TX/RX structs into malloc'ed memory, rather than in-line
inside of ath_softc. I'd rather like to keep ath_softc the same
layout regardless of configuration parameters.
Pointy hat to: adrian
a buffer pointer.
For large radar pulses, the AR9130 and later will return a series of
FFT results for software processing. These can overflow a single 2KB
buffer on longer pulses. This would result in undefined buffer behaviour.
This includes a few new fields in each RXed frame:
* per chain RX RSSI (ctl and ext);
* current RX chainmask;
* EVM information;
* PHY error code;
* basic RX status bits (CRC error, PHY error, etc).
This is primarily to allow me to do some userland PHY error processing
for radar and spectral scan data. However since EVM and per-chain RSSI
is provided, others may find it useful for a variety of tasks.
The default is to not compile in the radiotap vendor extensions, primarily
because tcpdump doesn't seem to handle the particular vendor extension
layout I'm using, and I'd rather not break existing code out there that
may be (badly) parsing the radiotap data.
Instead, add the option 'ATH_ENABLE_RADIOTAP_VENDOR_EXT' to your kernel
configuration file to enable these options.
and the CRC error bits set. The radar payload is correct.
When this happens, the stack doesn't see them PHY error frames and
isn't interpreted as a PHY error. So, no radar detection and no radiotap
PHY error handling.
Now, this may introduce some weird issues if the MAC sends up some other
combination of CRC error + PHY error frames; this commit would break that
and mark them as PHY errors instead of CRC errors.
I may tinker with this a little more to pass radar/early radar/spectral
frames up as PHY errors if the CRC bit is set, to restore the previous
behaviour (where if CRC is set on a PHY error frame, it's marked as a CRC
error rather than PHY error.)
Tested on: AR5416, over the air, to a USRP N200 which is generating a
large number of a variety of radar pulses.
TODO: Test on AR9130, AR9160, AR9280 (and maybe radar pulses on
2GHz on AR9285/AR9287.)
PR: kern/169362
a da(4) instance going away while GEOM is still probing it.
In this case, the GEOM disk class instance has been created by
disk_create(), and the taste of the disk is queued in the GEOM
event queue.
While that event is queued, the da(4) instance goes away. When the
open call comes into the da(4) driver, it dereferences the freed
(but non-NULL) peripheral pointer provided by GEOM, which results
in a panic.
The solution is to add a callback to the GEOM disk code that is
called when all of its resources are cleaned up. This is
implemented inside GEOM by adding an optional callback that is
called when all consumers have detached from a provider, and the
provider is about to be deleted.
scsi_cd.c,
scsi_da.c: In the register routine for the cd(4) and da(4)
routines, acquire a reference to the CAM peripheral
instance just before we call disk_create().
Use the new GEOM disk d_gone() callback to register
a callback (dadiskgonecb()/cddiskgonecb()) that
decrements the peripheral reference count once GEOM
has finished cleaning up its resources.
In the cd(4) driver, clean up open and close
behavior slightly. GEOM makes sure we only get one
open() and one close call, so there is no need to
set an open flag and decrement the reference count
if we are not the first open.
In the cd(4) driver, use cam_periph_release_locked()
in a couple of error scenarios to avoid extra mutex
calls.
geom.h: Add a new, optional, providergone callback that
is called when a provider is about to be deleted.
geom_disk.h: Add a new d_gone() callback to the GEOM disk
interface.
Bump the DISK_VERSION to version 2. This probably
should have been done after a couple of previous
changes, especially the addition of the d_getattr()
callback.
geom_disk.c: Add a providergone callback for the disk class,
g_disk_providergone(), that calls the user's
d_gone() callback if it exists.
Bump the DISK_VERSION to 2.
geom_subr.c: In g_destroy_provider(), call the providergone
callback if it has been provided.
In g_new_geomf(), propagate the class's
providergone callback to the new geom instance.
blkfront.c: Callers of disk_create() are supposed to pass in
DISK_VERSION, not an explicit disk API version
number. Update the blkfront driver to do that.
disk.9: Update the disk(9) man page to include information
on the new d_gone() callback, as well as the
previously added d_getattr() callback, d_descr
field, and HBA PCI ID fields.
MFC after: 5 days
and CAM_LUN_INVALID for case of missing devices. In removes tons of error
messages from CAM during bus scans.
Reported and tested by: Mike Tancsa <mike@sentex.net>
MFC after: 3 days
- Stateful TCP offload drivers for Terminator 3 and 4 (T3 and T4) ASICs.
These are available as t3_tom and t4_tom modules that augment cxgb(4)
and cxgbe(4) respectively. The cxgb/cxgbe drivers continue to work as
usual with or without these extra features.
- iWARP driver for Terminator 3 ASIC (kernel verbs). T4 iWARP in the
works and will follow soon.
Build-tested with make universe.
30s overview
============
What interfaces support TCP offload? Look for TOE4 and/or TOE6 in the
capabilities of an interface:
# ifconfig -m | grep TOE
Enable/disable TCP offload on an interface (just like any other ifnet
capability):
# ifconfig cxgbe0 toe
# ifconfig cxgbe0 -toe
Which connections are offloaded? Look for toe4 and/or toe6 in the
output of netstat and sockstat:
# netstat -np tcp | grep toe
# sockstat -46c | grep toe
Reviewed by: bz, gnn
Sponsored by: Chelsio communications.
MFC after: ~3 months (after 9.1, and after ensuring MFC is feasible)
and crosschecks against firmware documentation. We now check and report
FC firmware attributes and at least are now prepared for the upper 48 bits
of f/w attributes (which are probably for the 8100 or later cards). This
involed changing how inbits and outbits are calculated for varios commands,
hopefully clearer and cleaner. This also caused me to clean up the actual
mailbox register usage. Finally, we are now unconditionally using a CRN
for initiator mode.
A longstanding issue with the 2400/2500 is that they do *not* support
a "Prefer PTP followed by loop", which explains why enabling that
caused the f/w to crash.
A slightly more invasive change is to let the firmware load entirely
drive whether multi_id support is enabled or not.
Sponsored by: Spectralogic
MFC after: 1 week
D2500CC which I have, syscons in text-mode fails to show the expected
contents due to write errors into video-memory.
At least one of the causes is that we copy from syscons internal buffer
to the video memory with optimized bcopy(9) which uses >16bit operations.
Until now, 32bit and wider operations have always worked on the video
memory, but since I cannot find a single source which says that this
SHALL work, and since these chipsets/bugs are now out there, this
commit changes syscons to always use 16bit copies on i386 & amd64.
This may be relevevant for PR's:
166262
166639
and various other bug reports floating elsewhere on the net, but
I lack hardware to test those.
Due to some differences in MSRs between Xeon Sandy Bridge and Core Sandy
Bridge (Model 0x2A), wrmsr() may generate in a GP# fault exception and so a
panic of the machine.
Approved by: gnn (mentor)
MFC after: 3 days
* Add an OS_A_REG_WRITE() routine - analog writes require a 100usec delay
on AR9280 and later, so create a method to do it.
* Use it for the AR9287 analog writes.
* Re-indent and style(9) the code.
This just requires a little HAL change (add a new config parameter) and
some glue in if_ath_pci.c, however I'm leaving this up for someone else
to do.
Obtained from: Qualcomm Atheros
interacts with some non-highpoint controollers. Change attach_generic to
be off by default.
PR: kern/168910
Submitted by: Richard Yao <ryao@gentoo.org>
Approved by: cperciva
No objections by: -hackers
Obtained from: Gentoo FreeBSD
MFC after: 2 weeks
* Use ATH_RC_NUM instead of '4' when iterating over the ratecontrol series
array.
* A few style(9) fixes, hopefully no regressions here.
* Add some comments that better describe what's going on.
The existing code tries to use the beacon miss timer to signal that the AP
has gone away. Unfortunately this doesn't seem to be behaving itself.
I'll try to investigate why this is for the sake of completeness.
The result is the STA will stay "associated" to the AP it was associated
with when it suspended. It never receives a bmiss notification so it
never tries reassociating.
PR: kern/169084
This includes adding support for skipping FTDI interfaces used for JTAG
leaving them for userland and just attaching to the RS232 half, similarly
to how the corresponding Linux drivers handles these kind of adapters.
While at it, sort uftdi_devs and return BUS_PROBE_SPECIFIC (because
uftdi_probe() alters the instance variables for better or worse as do
other probe routines of USB drivers) instead of 0.
- Remove duplicated entries for BeagleBone.
- Use DEVMETHOD_END.
- Use NULL instead of 0 for pointers.
- Remove some stray lines.
MFC after: 3 days
MAXPHYS should be based on PAGE_SIZE rather than SYM_CONF_DMA_BOUNDARY.
While at it, reuse the SYM_CONF_MAX_SG macro for specifying the maximum
number of DMA tags so sym(4) itself doesn't size memory beyond what's
required for handling MAXPHYS.
PR: 168928
MFC after: 3 days
* Resize some types. In particular, bfs_seqno can be uint16_t for now.
Previous work would assign the unassigned seqno a value of -1, which
I obviously can't do here.
* Remove bfs_pktdur. It was in the original code but nothing so far uses
it.
This gets ath_buf down (on my i386 system) to 292 bytes from 300 bytes.
I'd rather it be much, much smaller.
fixed for 802.11n TX, this needs to be disabled or users wlil see randomly
hanging aggregation sessions.
Whilst I'm here, remove the warning about 802.11n being full of dragons.
It's nowhere near that scary now.
ath_start() is called.
This (defaults to 10 frames) gives for a little headway in the TX ath_buf
allocation, so buffer cloning is still possible.
This requires a lot omre experimenting and tuning.
It also doesn't stop a node/TID from consuming all of the available
ath_buf's, especially when the node is going through high packet loss
or only talking at a low TX rate. It also doesn't stop a paused TID
from taking all of the ath_bufs. I'll look at fixing that up in subsequent
commits.
PR: kern/168170
growing "downward" (moving the start address down). First, an off by
one error caused the end address to be moved down an extra alignment
chunk unnecessarily. Second, when aligning the new candidate starting
address, the wrong bits were masked off.
Tested by: Andrey Zonov andrey zonov org
MFC after: 3 days
traffic.
* Create sc_mgmt_txbuf and sc_mgmt_txdesc, initialise/free them appropriately.
* Create an enum to represent buffer types in the API.
* Extend ath_getbuf() and _ath_getbuf_locked() to take the above enum.
* Right now anything sent via ic_raw_xmit() allocates via ATH_BUFTYPE_MGMT.
This may not be very useful.
* Add ATH_BUF_MGMT flag (ath_buf.bf_flags) which indicates the current buffer
is a mgmt buffer and should go back onto the mgmt free list.
* Extend 'txagg' to include debugging output for both normal and mgmt txbufs.
* When checking/clearing ATH_BUF_BUSY, do it on both TX pools.
Tested:
* STA mode, with heavy UDP injection via iperf. This filled the TX queue
however BARs were still going out successfully.
TODO:
* Initialise the mgmt buffers with ATH_BUF_MGMT and then ensure the right
type is being allocated and freed on the appropriate list. That'd save
a write operation (to bf->bf_flags) on each buffer alloc/free.
* Test on AP mode, ensure that BAR TX and probe responses go out nicely
when the main TX queue is filled (eg with paused traffic to a TID,
awaiting a BAR to complete.)
PR: kern/168170
then solves because of cache coherency issues. This fixes periodic error
messages on console and command timeouts.
- Patch SATA PHY configuration for 65nm SoCs to improve SNR same as
Linux does.
MFC after: 2 weeks
(or direct dispatch) behind the TXQ lock (which, remember, is doubling
as the TID lock too for now.)
This ensures that:
(a) the sequence number and the CCMP PN allocation is done together;
(b) overlapping transmit paths don't interleave frames, so we don't
end up with the original issue that triggered kern/166190.
Ie, that we don't end up with seqno A, B in thread 1, C, D in
thread 2, and they being queued to the software queue as "A C D B"
or similar, leading to the BAW stalls.
This has been tested:
* both STA and AP modes with INVARIANTS and WITNESS;
* TCP and UDP TX;
* both STA->AP and AP->STA.
STA is a Routerstation Pro (single CPU MIPS) and the AP is a dual-core
Centrino.
PR: kern/166190
scheduled from the head of the software queue rather than trying to
queue the newly given frame.
This leads to some rather unfortunate out of order (but still valid
as it's inside the BAW) frame TX.
This now:
* Always queues the frame at the end of the software queue;
* Tries to direct dispatch the frame at the head of the software queue,
to try and fill up the hardware queue.
TODO:
* I should likely try to queue as many frames to the hardware as I can
at this point, rather than doing one at a time;
* ath_tx_xmit_aggr() may fail and this code assumes that it'll schedule
the TID. Otherwise TX may stall.
PR: kern/166190
This is an unfortunate byproduct of how the routine is used - it's called
with the head frame on the queue, but if the frame is failed, it's inserted
into the tail of the queue.
Because of this, the sequence numbers would get all shuffled around and
the BAW would be bumped past this sequence number, that's now at the
end of the software queue. Then, whenever it's time for that frame
to be transmitted, it'll be immediately outside of the BAW and TX will
stall until the BAW catches up.
It can also result in all kinds of weird duplicate BAW frames, leading
to hilarious panics.
PR: kern/166190
This showed up when doing heavy UDP throughput on SMP machines.
The problem with this is because the 802.11 sequence number is being
allocated separately to the CCMP PN replay number (which is assigned
during ieee80211_crypto_encap()).
Under significant throughput (200+ MBps) the TX path would be stressed
enough that frame TX/retry would force sequence number and PN allocation
to be out of order. So once the frames were reordered via 802.11 seqnos,
the CCMP PN would be far out of order, causing most frames to be discarded
by the receiver.
I've fixed this in some local work by being forced to:
(a) deal with the issues that lead to the parallel TX causing out of
order sequence numbers in the first place;
(b) fix all the packet queuing issues which lead to strange (but mostly
valid) TX.
I'll begin fixing these in a subsequent commit or five.
PR: kern/166190
Return PROTO_ATA protocol in response to XPT_PATH_INQ.
smartmontools uses it to identify ATA devices and I don't know any other
place now where it is important. It could probably use XPT_GDEV_TYPE
instead for more accurate protocol information, but let it live for now.
Reported by: matthew
MFC after: 3 days
suspend/resume procedures are minimized among them.
common:
- Add global cpuset suspended_cpus to indicate APs are suspended/resumed.
- Remove acpi_waketag and acpi_wakemap from acpivar.h (no longer used).
- Add some variables in acpi_wakecode.S in order to minimize the difference
among amd64 and i386.
- Disable load_cr3() because now CR3 is restored in resumectx().
amd64:
- Add suspend/resume related members (such as MSR) in PCB.
- Modify savectx() for above new PCB members.
- Merge acpi_switch.S into cpu_switch.S as resumectx().
i386:
- Merge(and remove) suspendctx() into savectx() in order to match with
amd64 code.
Reviewed by: attilio@, acpi@
until transport will do some probe actions (at least soft reset).
Make ATA/SATA SIMs to not report bogus and confusing PROTO_ATA protocol.
Make ATA/SATA transport to fill that gap by reporting protocol to SIM with
XPT_SET_TRAN_SETTINGS and patching XPT_GET_TRAN_SETTINGS results if needed.