Build mount_smbfs for arm. Also sort the subdirs.
Avoid unaligned memory accesses when encoding netbios names in libsmb.
The current code for encoding a netbios name converts each byte to a 16-bit
value and stores the result by casting a char* to u_short*, resulting in
alignment faults on strict-alignment platforms.
This change reimplements the encoding routine using only byte accesses to
memory. There is no particular reason to work with 16-bit values just
because the encoding process creates two bytes of output for every byte of
input. Working a byte at at time also avoids endian problems for big-endian
platforms.
Make the building of libsmb and mount_smbfs unconditional, now that r292552
has eliminated alignment and endian problems that were making it fail on
some platforms.
PR: 180438
PR: 189415
Relnotes: Yes
In addition to those revisions, add this change to a file that is not in
head:
sys/ia64/include/bus.h:
Guard kernel-only parts of the ia64 machine/bus.h header with
#ifdef _KERNEL.
This allows userland programs to include <machine/bus.h> to get the
definition of bus_addr_t and bus_size_t.
------------------------------------------------------------------------
r291716 | ken | 2015-12-03 15:54:55 -0500 (Thu, 03 Dec 2015) | 257 lines
Add asynchronous command support to the pass(4) driver, and the new
camdd(8) utility.
CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and
completed CCBs may be retrieved via the CAMIOGET ioctl. User
processes can use poll(2) or kevent(2) to get notification when
I/O has completed.
While the existing CAMIOCOMMAND blocking ioctl interface only
supports user virtual data pointers in a CCB (generally only
one per CCB), the new CAMIOQUEUE ioctl supports user virtual and
physical address pointers, as well as user virtual and physical
scatter/gather lists. This allows user applications to have more
flexibility in their data handling operations.
Kernel memory for data transferred via the queued interface is
allocated from the zone allocator in MAXPHYS sized chunks, and user
data is copied in and out. This is likely faster than the
vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in
configurations with many processors (there are more TLB shootdowns
caused by the mapping/unmapping operation) but may not be as fast
as running with unmapped I/O.
The new memory handling model for user requests also allows
applications to send CCBs with request sizes that are larger than
MAXPHYS. The pass(4) driver now limits queued requests to the I/O
size listed by the SIM driver in the maxio field in the Path
Inquiry (XPT_PATH_INQ) CCB.
There are some things things would be good to add:
1. Come up with a way to do unmapped I/O on multiple buffers.
Currently the unmapped I/O interface operates on a struct bio,
which includes only one address and length. It would be nice
to be able to send an unmapped scatter/gather list down to
busdma. This would allow eliminating the copy we currently do
for data.
2. Add an ioctl to list currently outstanding CCBs in the various
queues.
3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do
that.
4. Test physical address support. Virtual pointers and scatter
gather lists have been tested, but I have not yet tested
physical addresses or scatter/gather lists.
5. Investigate multiple queue support. At the moment there is one
queue of commands per pass(4) device. If multiple processes
open the device, they will submit I/O into the same queue and
get events for the same completions. This is probably the right
model for most applications, but it is something that could be
changed later on.
Also, add a new utility, camdd(8) that uses the asynchronous pass(4)
driver interface.
This utility is intended to be a basic data transfer/copy utility,
a simple benchmark utility, and an example of how to use the
asynchronous pass(4) interface.
It can copy data to and from pass(4) devices using any target queue
depth, starting offset and blocksize for the input and ouptut devices.
It currently only supports SCSI devices, but could be easily extended
to support ATA devices.
It can also copy data to and from regular files, block devices, tape
devices, pipes, stdin, and stdout. It does not support queueing
multiple commands to any of those targets, since it uses the standard
read(2)/write(2)/writev(2)/readv(2) system calls.
The I/O is done by two threads, one for the reader and one for the
writer. The reader thread sends completed read requests to the
writer thread in strictly sequential order, even if they complete
out of order. That could be modified later on for random I/O patterns
or slightly out of order I/O.
camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from
the pass(4) driver and also to send request notifications internally.
For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR)
per CAM CCB on the reading side, and a scatter/gather list
(CAM_DATA_SG) on the writing side. In addition to testing both
interfaces, this makes any potential reblocking of I/O easier. No
data is copied between the reader and the writer, but rather the
reader's buffers are split into multiple I/O requests or combined
into a single I/O request depending on the input and output blocksize.
For the file I/O path, camdd(8) also uses a single buffer (read(2),
write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list
(readv(2), writev(2), preadv(2), pwritev(2)) on writes.
Things that would be nice to do for camdd(8) eventually:
1. Add support for I/O pattern generation. Patterns like all
zeros, all ones, LBA-based patterns, random patterns, etc. Right
Now you can always use /dev/zero, /dev/random, etc.
2. Add support for a "sink" mode, so we do only reads with no
writes. Right now, you can use /dev/null.
3. Add support for automatic queue depth probing, so that we can
figure out the right queue depth on the input and output side
for maximum throughput. At the moment it defaults to 6.
4. Add support for SATA device passthrough I/O.
5. Add support for random LBAs and/or lengths on the input and
output sides.
6. Track average per-I/O latency and busy time. The busy time
and latency could also feed in to the automatic queue depth
determination.
sys/cam/scsi/scsi_pass.h:
Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue
and fetch asynchronous CAM CCBs respectively.
Although these ioctls do not have a declared argument, they
both take a union ccb pointer. If we declare a size here,
the ioctl code in sys/kern/sys_generic.c will malloc and free
a buffer for either the CCB or the CCB pointer (depending on
how it is declared). Since we have to keep a copy of the
CCB (which is fairly large) anyway, having the ioctl malloc
and free a CCB for each call is wasteful.
sys/cam/scsi/scsi_pass.c:
Add asynchronous CCB support.
Add two new ioctls, CAMIOQUEUE and CAMIOGET.
CAMIOQUEUE adds a CCB to the incoming queue. The CCB is
executed immediately (and moved to the active queue) if it
is an immediate CCB, but otherwise it will be executed
in passstart() when a CCB is available from the transport layer.
When CCBs are completed (because they are immediate or
passdone() if they are queued), they are put on the done
queue.
If we get the final close on the device before all pending
I/O is complete, all active I/O is moved to the abandoned
queue and we increment the peripheral reference count so
that the peripheral driver instance doesn't go away before
all pending I/O is done.
The new passcreatezone() function is called on the first
call to the CAMIOQUEUE ioctl on a given device to allocate
the UMA zones for I/O requests and S/G list buffers. This
may be good to move off to a taskqueue at some point.
The new passmemsetup() function allocates memory and
scatter/gather lists to hold the user's data, and copies
in any data that needs to be written. For virtual pointers
(CAM_DATA_VADDR), the kernel buffer is malloced from the
new pass(4) driver malloc bucket. For virtual
scatter/gather lists (CAM_DATA_SG), buffers are allocated
from a new per-pass(9) UMA zone in MAXPHYS-sized chunks.
Physical pointers are passed in unchanged. We have support
for up to 16 scatter/gather segments (for the user and
kernel S/G lists) in the default struct pass_io_req, so
requests with longer S/G lists require an extra kernel malloc.
The new passcopysglist() function copies a user scatter/gather
list to a kernel scatter/gather list. The number of elements
in each list may be different, but (obviously) the amount of data
stored has to be identical.
The new passmemdone() function copies data out for the
CAM_DATA_VADDR and CAM_DATA_SG cases.
The new passiocleanup() function restores data pointers in
user CCBs and frees memory.
Add new functions to support kqueue(2)/kevent(2):
passreadfilt() tells kevent whether or not the done
queue is empty.
passkqfilter() adds a knote to our list.
passreadfiltdetach() removes a knote from our list.
Add a new function, passpoll(), for poll(2)/select(2)
to use.
Add devstat(9) support for the queued CCB path.
sys/cam/ata/ata_da.c:
Add support for the BIO_VLIST bio type.
sys/cam/cam_ccb.h:
Add a new enumeration for the xflags field in the CCB header.
(This doesn't change the CCB header, just adds an enumeration to
use.)
sys/cam/cam_xpt.c:
Add a new function, xpt_setup_ccb_flags(), that allows specifying
CCB flags.
sys/cam/cam_xpt.h:
Add a prototype for xpt_setup_ccb_flags().
sys/cam/scsi/scsi_da.c:
Add support for BIO_VLIST.
sys/dev/md/md.c:
Add BIO_VLIST support to md(4).
sys/geom/geom_disk.c:
Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size
limiting code in g_disk_start() a bit.
sys/kern/subr_bus_dma.c:
Change _bus_dmamap_load_vlist() to take a starting offset and
length.
Add a new function, _bus_dmamap_load_pages(), that will load a list
of physical pages starting at an offset.
Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios.
Allow unmapped I/O to start at an offset.
sys/kern/subr_uio.c:
Add two new functions, physcopyin_vlist() and physcopyout_vlist().
sys/pc98/include/bus.h:
Guard kernel-only parts of the pc98 machine/bus.h header with
#ifdef _KERNEL.
This allows userland programs to include <machine/bus.h> to get the
definition of bus_addr_t and bus_size_t.
sys/sys/bio.h:
Add a new bio flag, BIO_VLIST.
sys/sys/uio.h:
Add prototypes for physcopyin_vlist() and physcopyout_vlist().
share/man/man4/pass.4:
Document the CAMIOQUEUE and CAMIOGET ioctls.
usr.sbin/Makefile:
Add camdd.
usr.sbin/camdd/Makefile:
Add a makefile for camdd(8).
usr.sbin/camdd/camdd.8:
Man page for camdd(8).
usr.sbin/camdd/camdd.c:
The new camdd(8) utility.
Sponsored by: Spectra Logic
------------------------------------------------------------------------
r291724 | ken | 2015-12-03 17:07:01 -0500 (Thu, 03 Dec 2015) | 6 lines
Fix typos in the camdd(8) usage() function output caused by an error in
my diff filter script.
Sponsored by: Spectra Logic
------------------------------------------------------------------------
r291741 | ken | 2015-12-03 22:38:35 -0500 (Thu, 03 Dec 2015) | 10 lines
Fix g_disk_vlist_limit() to work properly with deletes.
Add a new bp argument to g_disk_maxsegs(), and add a new function,
g_disk_maxsize() tha will properly determine the maximum I/O size for a
delete or non-delete bio.
Submitted by: will
Sponsored by: Spectra Logic
------------------------------------------------------------------------
------------------------------------------------------------------------
r291742 | ken | 2015-12-03 22:44:12 -0500 (Thu, 03 Dec 2015) | 5 lines
Fix a style issue in g_disk_limit().
Noticed by: bdrewery
------------------------------------------------------------------------
Sponsored by: Spectra Logic
r271401 (by asomers):
Conditionalize build of etcupdate(8) on MK_RCS. Since etcupdate calls
merge(1), which is part of the RCS package, it must not be installed if
WITHOUT_RCS update is set. Otherwise, it will produce confusing errors.
CR: https://reviews.freebsd.org/D691
Sponsored by: Spectra Logic
Add the following options to enable/disable several features in the base system
WITHOUT_BOOTPARAMD - bootparamd
WITHOUT_BOOTPD - bootpd
WITHOUT_FINGER - finger, fingerd
WITHOUT_FTP - ftp, ftpd
WITHOUT_INETD - inetd
WITHOUT_RBOOTD - rbootd
WITHOUT_TCP_WRAPPERS - tcpd, et al
WITHOUT_TFTP - tftp, tftp-server
WITHOUT_TIMED - timed
Sponsored by: EMC / Isilon Storage Division
r277675:
Add MK_ISCSI knob for building the iscsi initiator, iscsi daemon, kernel
modules, etc
Sponsored by: EMC / Isilon Storage Division
r277726:
Build sbin/iscontrol again if MK_ISCSI != no
Pointyhat to: me
r278070:
Remove duplicate MK_ISCSI block and sort the conditional blocks so this error
won't crop up again in the future
Reported by: gjb
Add fstyp(8). This utility, named after its SVR4 counterpart, detects
filesystems. It differs from file(1) in that it gives machine-parseable
output, it outputs filesystem labels, doesn't get confused by other
formats metadata, and runs in Capsicum sandbox.
Differential Revision: https://reviews.freebsd.org/D1255
Relnotes: yes
Sponsored by: The FreeBSD Foundation
Bring in the new automounter, similar to what's provided in most other
UNIX systems, eg. MacOS X and Solaris. It uses Sun-compatible map format,
has proper kernel support, and LDAP integration.
There are still a few outstanding problems; they will be fixed shortly.
Reviewed by: allanjude@, emaste@, kib@, wblock@ (earlier versions)
Phabric: D523
Relnotes: yes
Sponsored by: The FreeBSD Foundation
- r263220 Migrate tools/regression/sbin/ to the new tests layout.
- r263222 Add Makefile missed in r263220.
- r263226 Migrate tools/regression/{usr.bin/lastcomm,usr.sbin}/ to the new tests layout.
- r263227 Migrate most of tools/regression/usr.bin/ to the new tests layout.
- r263345 Expand tabs that sneaked in into spaces.
- r263346 Migrate tools/regression/usr.bin/make/ to the new tests layout.
- r263348 Add Makefiles missed in r263346.
- r263351 Migrate tools/regression/usr.bin/pkill/ to the new tests layout.
- r263388 Mark multi_test as requiring /usr/share/dict/words.
- r263814 Fix path to the run.pl script to let these tests run.
- r264742 Prevent building tests when bootstrapping make.
This is 'make tinderbox' clean.
Add a SUBDIR_PARALLEL option to bsd.subdir.mk, to allow make to process
all the SUBDIR entries in parallel, instead of serially. Apply this
option to a selected number of Makefiles, which can greatly speed up the
build on multi-core machines, when using make -j.
This can be extended to more Makefiles later on, whenever they are
verified to work correctly with parallel building.
I tested this on a 24-core machine, with make -j48 buildworld (N = 6):
before stddev after stddev
======= ====== ======= ======
real time 1741.1 16.5 959.8 2.7
user time 12468.7 16.4 14393.0 16.8
sys time 1825.0 54.8 2110.6 22.8
(user+sys)/real 8.2 17.1
E.g. the build was approximately 45% faster in real time. On machines
with less cores, or with lower -j settings, the speedup will not be as
impressive. But at least you can now almost max out a machine with
buildworld!
Submitted by: jilles
MFC r263833:
Enable parallel building for gnu/usr.bin and usr.bin/clang too.
Remove the isf(4) driver. It was created by accident and is subset of
the cfi(4) driver. It remained in the tree longer than would be ideal
due to the time required to bring cfi(4) to feature parity.
Sponsored by: DARPA/AFRL
Approved by: re (gjb)
Notable new features:
* Elliptic Curve Digital Signature Algorithm keys and signatures in
DNSSEC are now supported per RFC 6605. [RT #21918]
* Introduces a new tool "dnssec-verify" that validates a signed zone,
checking for the correctness of signatures and NSEC/NSEC3 chains.
[RT #23673]
* BIND now recognizes the TLSA resource record type, created to
support IETF DANE (DNS-based Authentication of Named Entities)
[RT #28989]
* The new "inline-signing" option, in combination with the
"auto-dnssec" option that was introduced in BIND 9.7, allows
named to sign zones completely transparently.
Approved by: delphij (mentor)
MFC after: 3 days
Sponsored by: DK Hostmaster A/S
stable/9 planned after MFC 3-day period. The MFC to stable/9 is desired for
the next release to get some much-needed time:
+ Living side-by-side with sysinstall for compare/contrast/transition
+ Living side-by-side with bsdinstall for integration/transition
+ Additional feedback/testing before eventual 10.0-R to make it even better
MFC after: 3 days
towards replacing our mtree.
Sponsored by: DARPA, AFRL
Thanks to: cristos@NetBSD for reviewing and committing my patches
wiz@NetBSD for fixing typos in my patches
auditdistd (distributed audit daemon) to the build:
- Manual cross references
- Makefile for auditdistd
- rc.d script, rc.conf entrie
- New group and user for auditdistd; associated aliases, etc.
The audit trail distribution daemon provides reliable,
cryptographically protected (and sandboxed) delivery of audit tails
from live clients to audit server hosts in order to both allow
centralised analysis, and improve resilience in the event of client
compromises: clients are not permitted to change trail contents
after submission.
Submitted by: pjd
Sponsored by: The FreeBSD Foundation (auditdistd)
disconnected under the WITH_BSDCONFIG flag (a good idea since this version of
sysrc(8) indeed requires the `sysrc.subr' module installed by bsdconfig(8)).
Multiple reasons sysrc should not simply continue to live in ports. The most
important being that it is tightly coupled with the base.
Approved by: adrian (co-mentor)
The driver attempts to support all documented parts, but has only been
tested with the 512Mbit part on the Terasic DE4 FPGA board. It should be
trivial to adapt the driver's attach routine to other embedded boards
using with any parts in the family.
Also import isfctl(8) which can be used to erase sections of the flash.
Sponsored by: DARPA, AFRL
deprecated sysinstall(8). NOTE: WITH_BSDCONFIG is currently required.
Submitted by: Devin Teske (dteske), Ron McDowell <rcm@fuzzwad.org>
Reviewed by: Ron McDowell <rcm@fuzzwad.org>
Approved by: Ed Maste (emaste)
not updated as part of `make installworld' such as files in /etc. It
manages updates by doing a three-way merge of changes made to these files
against the local versions. It is also designed to minimize the amount
of user intervention with the goal of simplifying upgrades for clusters
of machines.
The primary difference from mergemaster is that etcupdate requires less
manual work. The primary difference from etcmerge is that etcupdate
updates files in-place similar to mergemaster rather than building a
separate /etc tree.
Requested by: obrien, kib, theraven, joeld (among others)
Do not condition usr.sbin/pkg building on WITHOUT_PKGTOOLS anymore, so that users can
remove the old pkg_* tools without removing the pkgng boostrap
Approved by: des (mentor)
MFC after: 1 month
The NAND Flash environment consists of several distinct components:
- NAND framework (drivers harness for NAND controllers and NAND chips)
- NAND simulator (NANDsim)
- NAND file system (NAND FS)
- Companion tools and utilities
- Documentation (manual pages)
This work is still experimental. Please use with caution.
Obtained from: Semihalf
Supported by: FreeBSD Foundation, Juniper Networks
it respects PACKAGESITE, PACKAGEROOT, and a new environment variable ABI (if a user want to use a different API from the base one for its packages)
it has no man page on purpose to avoid hidding the pkg(8) man page from the pkgng package.
for now uses pkgbeta.FreeBSD.org as default mirror to find its package
it respects MK_PKGTOOLS
Approved by: des (mentor)
At first, I added a utility called utxrm(8) to remove stale entries from
the user accounting database. It seems there are cases in which we need
to perform different operations on the database as well. Simply rename
utxrm(8) to utx(8) and place the old code under the "rm" command.
In addition to "rm", this tool supports "boot" and "shutdown", which are
going to be used by an rc-script which I am going to commit separately.
CTL is a disk and processor device emulation subsystem originally written
for Copan Systems under Linux starting in 2003. It has been shipping in
Copan (now SGI) products since 2005.
It was ported to FreeBSD in 2008, and thanks to an agreement between SGI
(who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is
available under a BSD-style license. The intent behind the agreement was
that Spectra would work to get CTL into the FreeBSD tree.
Some CTL features:
- Disk and processor device emulation.
- Tagged queueing
- SCSI task attribute support (ordered, head of queue, simple tags)
- SCSI implicit command ordering support. (e.g. if a read follows a mode
select, the read will be blocked until the mode select completes.)
- Full task management support (abort, LUN reset, target reset, etc.)
- Support for multiple ports
- Support for multiple simultaneous initiators
- Support for multiple simultaneous backing stores
- Persistent reservation support
- Mode sense/select support
- Error injection support
- High Availability support (1)
- All I/O handled in-kernel, no userland context switch overhead.
(1) HA Support is just an API stub, and needs much more to be fully
functional.
ctl.c: The core of CTL. Command handlers and processing,
character driver, and HA support are here.
ctl.h: Basic function declarations and data structures.
ctl_backend.c,
ctl_backend.h: The basic CTL backend API.
ctl_backend_block.c,
ctl_backend_block.h: The block and file backend. This allows for using
a disk or a file as the backing store for a LUN.
Multiple threads are started to do I/O to the
backing device, primarily because the VFS API
requires that to get any concurrency.
ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a
small amount of memory to act as a source and sink
for reads and writes from an initiator. Therefore
it cannot be used for any real data, but it can be
used to test for throughput. It can also be used
to test initiators' support for extremely large LUNs.
ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes,
and command handler functions defined for supported
opcodes.
ctl_debug.h: Debugging support.
ctl_error.c,
ctl_error.h: CTL-specific wrappers around the CAM sense building
functions.
ctl_frontend.c,
ctl_frontend.h: These files define the basic CTL frontend port API.
ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM.
This frontend allows for using CTL without any
target-capable hardware. So any LUNs you create in
CTL are visible in CAM via this port.
ctl_frontend_internal.c,
ctl_frontend_internal.h:
This is a frontend port written for Copan to do
some system-specific tasks that required sending
commands into CTL from inside the kernel. This
isn't entirely relevant to FreeBSD in general,
but can perhaps be repurposed.
ctl_ha.h: This is a stubbed-out High Availability API. Much
more is needed for full HA support. See the
comments in the header and the description of what
is needed in the README.ctl.txt file for more
details.
ctl_io.h: This defines most of the core CTL I/O structures.
union ctl_io is conceptually very similar to CAM's
union ccb.
ctl_ioctl.h: This defines all ioctls available through the CTL
character device, and the data structures needed
for those ioctls.
ctl_mem_pool.c,
ctl_mem_pool.h: Generic memory pool implementation used by the
internal frontend.
ctl_private.h: Private data structres (e.g. CTL softc) and
function prototypes. This also includes the SCSI
vendor and product names used by CTL.
ctl_scsi_all.c,
ctl_scsi_all.h: CTL wrappers around CAM sense printing functions.
ctl_ser_table.c: Command serialization table. This defines what
happens when one type of command is followed by
another type of command.
ctl_util.c,
ctl_util.h: CTL utility functions, primarily designed to be
used from userland. See ctladm for the primary
consumer of these functions. These include CDB
building functions.
scsi_ctl.c: CAM target peripheral driver and CTL frontend port.
This is the path into CTL for commands from
target-capable hardware/SIMs.
README.ctl.txt: CTL code features, roadmap, to-do list.
usr.sbin/Makefile: Add ctladm.
ctladm/Makefile,
ctladm/ctladm.8,
ctladm/ctladm.c,
ctladm/ctladm.h,
ctladm/util.c: ctladm(8) is the CTL management utility.
It fills a role similar to camcontrol(8).
It allow configuring LUNs, issuing commands,
injecting errors and various other control
functions.
usr.bin/Makefile: Add ctlstat.
ctlstat/Makefile
ctlstat/ctlstat.8,
ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8).
It reports I/O statistics for CTL.
sys/conf/files: Add CTL files.
sys/conf/NOTES: Add device ctl.
sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB
length field is now 2 bytes long.
Add several mode page definitions for CTL.
sys/cam/scsi_all.c: Handle the new 2 byte inquiry length.
sys/dev/ciss/ciss.c,
sys/dev/ata/atapi-cam.c,
sys/cam/scsi/scsi_targ_bh.c,
scsi_target/scsi_cmds.c,
mlxcontrol/interface.c: Update for 2 byte inquiry length field.
scsi_da.h: Add versions of the format and rigid disk pages
that are in a more reasonable format for CTL.
amd64/conf/GENERIC,
i386/conf/GENERIC,
ia64/conf/GENERIC,
sparc64/conf/GENERIC: Add device ctl.
i386/conf/PAE: The CTL frontend SIM at least does not compile
cleanly on PAE.
Sponsored by: Copan Systems, SGI and Spectra Logic
MFC after: 1 month
digit beyond your time.
Various sysinstall dependencies (e.g. libftpio, libdisk, libodialog, etc.)
will be cleaned up in coming days. Some will take longer than others due to
a few other consumers (tzsetup and sade).
added/removed interfaces in a more consistent manner and reloading the
configuration file.
- Implement burst unsolicited RA sending into the internal RA timer framework
when AdvSendAdvertisements and/or configuration entries are changed as
described in RFC 4861 6.2.4. This fixes issues that make termination of the
rtadvd(8) daemon take very long time.
An interface now has three internal states, UNCONFIGURED, TRANSITIVE, or
CONFIGURED, and the burst unsolicited sending happens in TRANSITIVE.
See rtadvd.h for the details.
- rtadvd(8) now accepts non-existent interfaces as well in the command line.
- Add control socket support and rtadvctl(8) utility to show the RA information
in rtadvd(8). Dumping by SIGUSR1 has been removed in favor of it.
This includes a structural change regarding atomic ops. Previously they
were enabled on all platforms unless we had knowledge that they did not
work. However both work performed by marius@ on sparc64 and the fact that
the 9.8.x branch is fussier in this area has demonstrated that this is
not a safe approach. So I've modified a patch provided by marius to
enable them for i386, amd64, and ia64 only.
added/removed interfaces in a more consistent manner and reloading
the configuration file.
- Add initial support for control socket. RA information in the
daemon can be obtained by rtadvctl(8) instead of SIGUSR1 in a similar
manner to ifconfig(8). The information dump has been removed in favor of it.
(reload the configuration file)
# rtadvctl reload
(show RA messages being sent on each interfaces)
# rtadvctl show
em0: flags=<UP,CONFIGURED,PERSIST> status=<RA_SEND> mtu 1280
DefaultLifetime: 30m
MinAdvInterval/MaxAdvInterval: 3m20s/3m20s
AdvLinkMTU: <none>, Flags: O, Preference: medium
ReachableTime: 0s, RetransTimer: 0s, CurHopLimit: 64
AdvIfPrefixes: yes
(show RA messages being sent only on em0)
# rtadvctl show em0
(rtadvctl -v show provides additional information)
# rtadvctl -v show em0
em0: flags=<UP,CONFIGURED,PERSIST> status=<RA_SEND> mtu 1280
DefaultLifetime: 30m
MinAdvInterval/MaxAdvInterval: 3m20s/3m20s
AdvLinkMTU: <none>, Flags: O, Preference: medium
ReachableTime: 0s, RetransTimer: 0s, CurHopLimit: 64
AdvIfPrefixes: yes
Prefixes (1):
2001:db8:1::/64 (CONFIG, vltime=30d, pltime=7d, flags=LA)
RDNSS entries:
2001:db8:1::128 (ltime=2m40s)
(stop rtadvd)
# rtadvctl shutdown
A remaining issue when reloading the configuration file is that
during that period rtadvd cannot communicate with rtadvctl due to some
additional RA sending for graceful shutdown. This will be fixed later.
This knob removes the tools that are exclusively used to view and
maintain the databases maintained by utmpx, namely last, users, who,
wtmpcvt, ac, lastlogin and utxrm.
The tool w is not in this list, because it has some other functionality
which is unrelated to utmpx; it is hardlinked to the uptime tool.
The WITHOUT_ACCT switch is supposed to omit tools related to process
accounting, namely accton and sa. ac(8) is just a simple tool that
prints statistics based on data in the utx.log database. It has nothing
to do with the former.
Most of the ports I broke when I imported utmpx, were simple management
utilities for the utmp database, allowing you to add/remove entries
manually.
Add a small tool called utxrm(8), which allows you to remove an entry
from the utmpx database by hand. This is useful when a login daemon
crashes or fails to remove the entry during shutdown.
pc-sysinstall) a replacement for sysinstall in the 9.0 release and beyond.
Currently supported platforms are sparc64, pc98, i386, amd64, powerpc, and
powerpc64. Integration into the build system will occur in the coming
weeks.
Merging with pc-sysinstall will use this code as a frontend, while
temporarily retaining the interactive partition editor here. This work
will be done in parallel with improvements on this code and release
integration.
Thanks to all who have provided testing and comments!