This mistakenly removed the SUBDIR_PARALLEL but even worse is that the install
(and build) order is not correct due to the lack of SUBDIR_DEPEND on the
most critical libraries. The only reason they build correctly now is because
buildworld's 'make libraries' orders them properly.
Pointyhat to: bdrewery
Sponsored by: EMC / Isilon Storage Division
After calling the cap_init(3) function Casper will fork from it's original
process, using pdfork(2). Forking from a process has a lot of advantages:
1. We have the same cwd as the original process.
2. The same uid, gid and groups.
3. The same MAC labels.
4. The same descriptor table.
5. The same routing table.
6. The same umask.
7. The same cpuset(1).
From now services are also in form of libraries.
We also removed libcapsicum at all and converts existing program using Casper
to new architecture.
Discussed with: pjd, jonathan, ed, drysdale@google.com, emaste
Partially reviewed by: drysdale@google.com, bdrewery
Approved by: pjd (mentor)
Differential Revision: https://reviews.freebsd.org/D4277
system call information such as system call arguments. Initially this
will consist of pulling duplicated code out of truss and kdump though it
may prove useful for other utilities in the future.
This commit moves the shared utrace(2) record parser out of kdump into
the library and updates kdump and truss to use it. One difference from
the previous version is that the library version treats unknown events
that start with the "RTLD" signature as unknown events. This simplifies
the interface and allows the consumer to decide how to handle all
non-recognized events. Instead, this function only generates a string
description for known malloc() and RTLD records.
Reviewed by: bdrewery
Differential Revision: https://reviews.freebsd.org/D4537
This avoids the need for an afterinstall: hook and a check for LIBRARIES_ONLY.
It also now respects INCLUDEDIR.
This came in r249484.
Sponsored by: EMC / Isilon Storage Division
routines to interface with net80211.
This is all from the ifconfig program; the duplicate code from ifconfig
will be removed when it starts using this API.
Differential Revision: https://reviews.freebsd.org/D4290
The dependency for ypldap is only with WITH_NIS, but libevent is small
enough to not warrant the extra logic and maintenance cost here so just
always build it.
Sponsored by: EMC / Isilon Storage Division
libopenbsd is an internal library which
to bring in compatibility stuff from OpenBSD.
This will allow us to bring in more
OpenBSD utilities into the FreeBSD base system.
We similarly use libnetbsd for bringing in stuff from NetBSD.
Reviewed by: bapt
Differential Revision: https://reviews.freebsd.org/D4078
The option was added only to ease the transition from GNU Binutils to
ELF Tool Chain tools, and that process is now complete (for the viable
replacements). Noting the removal in UPDATING is sufficient as we have
not shipped a release with the option.
Reviewed by: brooks
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D3240
The appropriate subdirectories are handled by lib/csu/Makefile. There's
no need to duplicate this logic in Makefile.inc1 and lib/Makefile.
Reviewed by: imp
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D2523
The primary focus of these changes is to modernize FreeBSD's
tape infrastructure so that we can take advantage of some of the
features of modern tape drives and allow support for LTFS.
Significant changes and new features include:
o sa(4) driver status and parameter information is now exported via an
XML structure. This will allow for changes and improvements later
on that will not break userland applications. The old MTIOCGET
status ioctl remains, so applications using the existing interface
will not break.
o 'mt status' now reports drive-reported tape position information
as well as the previously available calculated tape position
information. These numbers will be different at times, because
the drive-reported block numbers are relative to BOP (Beginning
of Partition), but the block numbers calculated previously via
sa(4) (and still provided) are relative to the last filemark.
Both numbers are now provided. 'mt status' now also shows the
drive INQUIRY information, serial number and any position flags
(BOP, EOT, etc.) provided with the tape position information.
'mt status -v' adds information on the maximum possible I/O size,
and the underlying values used to calculate it.
o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed.
The extra devices were originally added as place holders for
density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap
and Solaris) have had device nodes that, when you write to them,
will automatically select a given density for particular tape drives.
This is a convenient way of switching densities, but it was never
implemented in FreeBSD. Only the device nodes were there, and that
sometimes confused users.
For modern tape devices, the density is generally not selectable
(e.g. with LTO) or defaults to the highest availble density when
the tape is rewritten from BOT (e.g. TS11X0). So, for most users,
density selection won't be necessary. If they do need to select
the density, it is easy enough to use 'mt density' to change it.
o Protection information is now supported. This is either a
Reed-Solomon CRC or CRC32 that is included at the end of each block
read and written. On write, the tape drive verifies the CRC, and
on read, the tape drive provides a CRC for the userland application
to verify.
o New, extensible tape driver parameter get/set interface.
o Density reporting information. For drives that support it,
'mt getdensity' will show detailed information on what formats the
tape drive supports, and what formats the tape drive supports.
o Some mt(1) functionality moved into a new mt(3) library so that
external applications can reuse the code.
o The new mt(3) library includes helper routines to aid in parsing
the XML output of the sa(4) driver, and build a tree of driver
metadata.
o Support for the MTLOAD (load a tape in the drive) and MTWEOFI
(write filemark immediate) ioctls needed by IBM's LTFS
implementation.
o Improve device departure behavior for the sa(4) driver. The previous
implementation led to hangs when the device was open.
o This has been tested on the following types of drives:
IBM TS1150
IBM TS1140
IBM LTO-6
IBM LTO-5
HP LTO-2
Seagate DDS-4
Quantum DLT-4000
Exabyte 8505
Sony DDS-2
contrib/groff/tmac/doc-syms,
share/mk/bsd.libnames.mk,
lib/Makefile,
Add libmt.
lib/libmt/Makefile,
lib/libmt/mt.3,
lib/libmt/mtlib.c,
lib/libmt/mtlib.h,
New mt(3) library that contains functions moved from mt(1) and
new functions needed to interact with the updated sa(4) driver.
This includes XML parser helper functions that application writers
can use when writing code to query tape parameters.
rescue/rescue/Makefile:
Add -lmt to CRUNCH_LIBS.
src/share/man/man4/mtio.4
Clarify this man page a bit, and since it contains what is
essentially the mtio.h header file, add new ioctls and structure
definitions from mtio.h.
src/share/man/man4/sa.4
Update BUGS and maintainer section.
sys/cam/scsi/scsi_all.c,
sys/cam/scsi/scsi_all.h:
Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building
functions.
sys/cam/scsi/scsi_sa.c
sys/cam/scsi/scsi_sa.h
Many tape driver changes, largely outlined above.
Increase the sa(4) driver read/write timeout from 4 to 32
minutes. This is based on the recommended values for IBM LTO
5/6 drives. This may also avoid timeouts for other tape
hardware that can take a long time to do retries and error
recovery. Longer term, a better way to handle this is to ask
the drive for recommended timeout values using the REPORT
SUPPORTED OPCODES command. Modern IBM and Oracle tape drives
at least support that command, and it would allow for more
accurate timeout values.
Add XML status generation. This is done with a series of
macros to eliminate as much duplicate code as possible. The
new XML-based status values are reported through the new
MTIOCEXTGET ioctl.
Add XML driver parameter reporting, using the new MTIOCPARAMGET
ioctl.
Add a new driver parameter setting interface, using the new
MTIOCPARAMSET and MTIOCSETLIST ioctls.
Add a new MTIOCRBLIM ioctl to get block limits information.
Add CCB/CDB building routines scsi_locate_16, scsi_locate_10,
and scsi_read_position_10().
scsi_locate_10 implements the LOCATE command, as does the
existing scsi_set_position() command. It just supports
additional arguments and features. If/when we figure out a
good way to provide backward compatibility for older
applications using the old function API, we can just revamp
scsi_set_position(). The same goes for
scsi_read_position_10() and the existing scsi_read_position()
function.
Revamp sasetpos() to take the new mtlocate structure as an
argument. It now will use either scsi_locate_10() or
scsi_locate_16(), depending upon the arguments the user
supplies. As before, once we change position we don't have a
clear idea of what the current logical position of the tape
drive is.
For tape drives that support long form position data, we
read the current position and store that for later reporting
after changing the position. This should help applications
like Bacula speed tape access under FreeBSD once they are
modified to support the new ioctls.
Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all
drives that report SCSI-2 or older, as well as drives that
report an Illegal Request type error for READ POSITION with
the long format. So we should automatically detect drives
that don't support the long form and stop asking for it after
an initial try.
Add a partition number to the sa(4) softc.
Improve device departure handling. The previous implementation
led to hangs when the device was open.
If an application had the sa(4) driver open, and attempted to
close it after it went away, the cam_periph_release() call in
saclose() would cause the periph to get destroyed because that
was the last reference to it. Because destroy_dev() was
called from the sa(4) driver's cleanup routine (sacleanup()),
and would block waiting for the close to happen, a deadlock
would result.
So instead of calling destroy_dev() from the cleanup routine,
call destroy_dev_sched_cb() from saoninvalidate() and wait for
the callback.
Acquire a reference for devfs in saregister(), and release it
in the new sadevgonecb() routine when all devfs devices for
the particular sa(4) driver instance are gone.
Add a new function, sasetupdev(), to centralize setting
per-instance devfs device parameters instead of repeating the
code in saregister().
Add an open count to the softc, so we know how many
peripheral driver references are a result of open
sessions.
Add the D_TRACKCLOSE flag to the cdevsw flags so
that we get a 1:1 mapping of open to close calls
instead of a N:1 mapping.
This should be a no-op for everything except the
control device, since we don't allow more than one
open on non-control devices.
However, since we do allow multiple opens on the
control device, the combination of the open count
and the D_TRACKCLOSE flag should result in an
accurate peripheral driver reference count, and an
accurate open count.
The accurate open count allows us to release all
peripheral driver references that are the result
of open contexts once we get the callback from devfs.
sys/sys/mtio.h:
Add a number of new mt(4) ioctls and the requisite data
structures. None of the existing interfaces been removed
or changed.
This includes definitions for the following new ioctls:
MTIOCRBLIM /* get block limits */
MTIOCEXTLOCATE /* seek to position */
MTIOCEXTGET /* get tape status */
MTIOCPARAMGET /* get tape params */
MTIOCPARAMSET /* set tape params */
MTIOCSETLIST /* set N params */
usr.bin/mt/Makefile:
mt(1) now depends on libmt, libsbuf and libbsdxml.
usr.bin/mt/mt.1:
Document new mt(1) features and subcommands.
usr.bin/mt/mt.c:
Implement support for mt(1) subcommands that need to
use getopt(3) for their arguments.
Implement a new 'mt status' command to replace the old
'mt status' command. The old status command has been
renamed 'ostatus'.
The new status function uses the MTIOCEXTGET ioctl, and
therefore parses the XML data to determine drive status.
The -x argument to 'mt status' allows the user to dump out
the raw XML reported by the kernel.
The new status display is mostly the same as the old status
display, except that it doesn't print the redundant density
mode information, and it does print the current partition
number and position flags.
Add a new command, 'mt locate', that will supersede the
old 'mt setspos' and 'mt sethpos' commands. 'mt locate'
implements all of the functionality of the MTIOCEXTLOCATE
ioctl, and allows the user to change the logical position
of the tape drive in a number of ways. (Partition,
block number, file number, set mark number, end of data.)
The immediate bit and the explicit address bits are
implemented, but not documented in the man page.
Add a new 'mt weofi' command to use the new MTWEOFI ioctl.
This allows the user to ask the drive to write a filemark
without waiting around for the operation to complete.
Add a new 'mt getdensity' command that gets the XML-based
tape drive density report from the sa(4) driver and displays
it. This uses the SCSI REPORT DENSITY SUPPORT command
to get comprehensive information from the tape drive about
what formats it is able to read and write.
Add a new 'mt protect' command that allows getting and setting
tape drive protection information. The protection information
is a CRC tacked on to the end of every read/write from and to
the tape drive.
Sponsored by: Spectra Logic
MFC after: 1 month
This brings support for multi-threaded compression. This brings close
N times faster compression where N is the number of CPU cores.
Because of this, liblzma now depends on libthr.
Soon libarchive will be modified to use the new lzma API.
Thanks to antoine@ for the exp-run.
Differential Revision: https://reviews.freebsd.org/D1786
Reviewed by: bapt
allows the user to request administrative changes to individual devices
such as attach or detaching drivers or disabling and re-enabling devices.
- Add a new /dev/devctl2 character device which uses ioctls for device
requests. The ioctls use a common 'struct devreq' which is somewhat
similar to 'struct ifreq'.
- The ioctls identify the device to operate on via a string. This
string can either by the device's name, or it can be a bus-specific
address. (For unattached devices, a bus address is the only way to
locate a device.) Bus drivers register an eventhandler to claim
unrecognized device names that the driver recognizes as a valid address.
Two buses currently support addresses: ACPI recognizes any device
in the ACPI namespace via its full path starting with "\" and
the PCI bus driver recognizes an address specification of
'pci[<domain>:]<bus>:<slot>:<func>' (identical to the PCI selector
strings supported by pciconf).
- To make it easier to cut and paste, change the PnP location string
in the PCI bus driver to output a full PCI selector string rather
than 'slot=<slot> function=<func>'.
- Add a devctl(3) interface in libdevctl which provides a wrapper around
the ioctls and is the preferred interface for other userland code.
- Add a devctl(8) program which is a simple wrapper around the requests
supported by devctl(3).
- Add a device_is_suspended() function to check DF_SUSPENDED.
- Add a resource_unset_value() function that can be used to remove a
hint from the kernel environment. This is used to clear a
hint.<driver>.<unit>.disabled hint when re-enabling a boot-time
disabled device.
Reviewed by: imp (parts)
Requested by: imp (changing PCI location string)
Relnotes: yes
contains the libraries for Address Sanitizer (asan), Undefined Behavior
Sanitizer (ubsan) and Profile Guided Optimization.
ASan is a fast memory error detector. It can detect the following types
of bugs:
Out-of-bounds accesses to heap, stack and globals
Use-after-free
Use-after-return (to some extent)
Double-free, invalid free
Memory leaks (experimental)
Typical slowdown introduced by AddressSanitizer is 2x.
UBSan is a fast and compatible undefined behavior checker. It enables a
number of undefined behavior checks that have small runtime cost and no
impact on address space layout or ABI.
PLEASE NOTE: the sanitizers still have some rough edges on FreeBSD,
particularly on i386. These will hopefully be smoothed out in the
coming time.
Differential Revision: https://reviews.freebsd.org/D1505
Set WITH_ELFTOOLCHAIN_TOOLS in src.conf to use the elftoolchain version
of the following tools:
* addr2line
* elfcopy (strip / mcs)
* nm
* size
* strings
Reviewed by: bapt (earlier version)
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D1224
This is a thin wrapper around the kernel interface which should make
it easier to write GPIO applications. gpioctl(8) will be converted to
use this library in a separate commit.
Differential Revision: https://reviews.freebsd.org/D1183
Reviewed by: adrian, loos
Discussed on: arm@, embedded@
Relnotes: yes
shortly thereafter via r274124 until I could get the right recipe
down w/respect to SUBDIR_DEPEND.
Thanks to: ngie, ian
Reviewed by: ian
MFC after: 21 days
X-MFC-to: stable/10 stable/9
X-MFC-with: 274116 274120 274121 274123 274144 274146
line-noise (libdialog never lived in lib/ -- but rather the noise
came from translating a comment that was introduced 16 years ago
via r40306; translation from comment to code occurred via r267511).
MFC after: 3 days
Reviewed by: ngie
X-MFC-to: stable/10
issue. lib/atf isn't a prereq_lib, since it isn't required for other
libraries to build. Remove it. The old kludge of always building it
had effectively been retired. Since we don't want to build the
libraries with the tests when we're bootstrapping, invent
MK_TESTS_SUPPORT which normally defaults to the current MK_TESTS
value, except when explicitly defined. Make lib/atf depend on it being
yes. When building the libraries set MK_TESTS to no, and
MK_TESTS_SUPPORT to the current value of MK_TESTS so that later stages
of the build work correctly. This should fix (and does for me)
people's issues with parallel builds racing between lib/atf and
libexec/atf. Since lib/atf is built during the libraries phase, the
race disappears.
This allows us to use libevent for other application in the future.
For now libevent is still INTERNALLIB and no shared library is installed.
MFC after: 1 month
This includes:
o All directories named *ia64*
o All files named *ia64*
o All ia64-specific code guarded by __ia64__
o All ia64-specific makefile logic
o Mention of ia64 in comments and documentation
This excludes:
o Everything under contrib/
o Everything under crypto/
o sys/xen/interface
o sys/sys/elf_common.h
Discussed at: BSDcan
during SUBDIR_PARALLEL builds. This augments the coarse .WAIT mechanism,
which is still useful if you've got a situation such as "almost everything
depends on A and B".
Because the parallel subdir mechanism uses non-obvious mangling of
target names, which should probably remain a private detail of the
implementation, it's not easy to do things like "libfoo: libbar", so
instead the new mechanism lets you set a variable that lists dependencies:
SUBDIR_DEPEND_libfoo= libgroodah libpouet
Note that while I'm using libraries as an example here, it really has
nothing to do with the generated library files. This is really saying
"build in directory libfoo after building in the libgroodah and libpouet
directories."
This updates lib/Makefile with dependency information based on the old
almost-accurate comment block and by combing through lib/* makefiles
looking for LDADD dependencies to other libraries within lib/*.
Reviewed by: Jia-Shiun Li <jiashiun@gmail.com>
early built libraries. This should be sufficient for most cases and
has eliminated the issues I've seen with high -j builds. Races likely
still remain, but this knocks the problem down a notch.
all the SUBDIR entries in parallel, instead of serially. Apply this
option to a selected number of Makefiles, which can greatly speed up the
build on multi-core machines, when using make -j.
This can be extended to more Makefiles later on, whenever they are
verified to work correctly with parallel building.
I tested this on a 24-core machine, with make -j48 buildworld (N = 6):
before stddev after stddev
======= ====== ======= ======
real time 1741.1 16.5 959.8 2.7
user time 12468.7 16.4 14393.0 16.8
sys time 1825.0 54.8 2110.6 22.8
(user+sys)/real 8.2 17.1
E.g. the build was approximately 45% faster in real time. On machines
with less cores, or with lower -j settings, the speedup will not be as
impressive. But at least you can now almost max out a machine with
buildworld!
Submitted by: jilles
MFC after: 2 weeks