Before iSCSI implementation CTL had no knowledge about frontend drivers,
it had only frontends, which really were ports (alike to LUNs, if comparing
to backends). But iSCSI added there ioctl() method, which does not belong
to frontend as a port, but belongs to a frontend driver.
For every supported command define CDB length and mask of bits that are
allowed to be set. This allows to remove bunch of checks through the code
and still make the validation more strict. To properly do it for commands
supporting multiple service actions, formalize their parsing by adding
subtables for each of such commands.
As visible effect, this change allows to add support for REPORT SUPPORTED
OPERATION CODES command, reporting to client all the data about supported
SCSI commands, except timeouts.
MFC after: 2 weeks
These changes prevent sysctl(8) from returning proper output,
such as:
1) no output from sysctl(8)
2) erroneously returning ENOMEM with tools like truss(1)
or uname(1)
truss: can not get etype: Cannot allocate memory
there is an environment variable which shall initialize the SYSCTL
during early boot. This works for all SYSCTL types both statically and
dynamically created ones, except for the SYSCTL NODE type and SYSCTLs
which belong to VNETs. A new flag, CTLFLAG_NOFETCH, has been added to
be used in the case a tunable sysctl has a custom initialisation
function allowing the sysctl to still be marked as a tunable. The
kernel SYSCTL API is mostly the same, with a few exceptions for some
special operations like iterating childrens of a static/extern SYSCTL
node. This operation should probably be made into a factored out
common macro, hence some device drivers use this. The reason for
changing the SYSCTL API was the need for a SYSCTL parent OID pointer
and not only the SYSCTL parent OID list pointer in order to quickly
generate the sysctl path. The motivation behind this patch is to avoid
parameter loading cludges inside the OFED driver subsystem. Instead of
adding special code to the OFED driver subsystem to post-load tunables
into dynamically created sysctls, we generalize this in the kernel.
Other changes:
- Corrected a possibly incorrect sysctl name from "hw.cbb.intr_mask"
to "hw.pcic.intr_mask".
- Removed redundant TUNABLE statements throughout the kernel.
- Some minor code rewrites in connection to removing not needed
TUNABLE statements.
- Added a missing SYSCTL_DECL().
- Wrapped two very long lines.
- Avoid malloc()/free() inside sysctl string handling, in case it is
called to initialize a sysctl from a tunable, hence malloc()/free() is
not ready when sysctls from the sysctl dataset are registered.
- Bumped FreeBSD version to indicate SYSCTL API change.
MFC after: 2 weeks
Sponsored by: Mellanox Technologies
Instead of trying to guess size of disk I/O operations (it just won't work
that way for newly added commands, and is equal to data move size for old
ones), account data move traffic. If disk I/Os are that interesting, then
backends have to account and provide that information.
Block backend already exports the information about disk I/Os via devstat,
so having it here too is excessive.
MFC after: 2 weeks
This gives some use to 512KB per-LUN buffers, allocated for Copan-specific
processor code and not used. It allows, for example, to test transport
performance and/or correctness without accessing the media, as supported
by Linux version of sg3_utils.
MFC after: 2 weeks
Split global ctl_lock, historically protecting most of CTL context:
- remaining ctl_lock now protects lists of fronends and backends;
- per-LUN lun_lock(s) protect LUN-specific information;
- per-thread queue_lock(s) protect request queues.
This allows to radically reduce congestion on ctl_lock.
Create multiple worker threads, depending on number of CPUs, and assign
each LUN to one of them. This allows to spread load between multiple CPUs,
still avoiging congestion on queues and LUNs locks.
On 40-core server, exporting 5 LUNs, each backed by gstripe of SATA SSDs,
accessed via 6 iSCSI connections, this change improves peak request rate
from 250K to 680K IOPS.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
While for FreeBSD client that is only a minor optimization, VMWare client
doesn't support additional data requests after all data being sent once as
immediate.
MFC after: 1 week
Sponsored by: iXsystems, Inc.
From one side it allows to remove CTL_FLAG_TASK_PENDING flag, handling of
which significantly complicates fine-grained locking. From the other side
it reduces task management requests latency even below then that flag could.
As downside, it denies task management code to sleep, but that is not needed
any way now.
Discussed with: ken
This should allow to abort commands doing mostly disk I/O, such as VERIFY
or WRITE SAME. Before this change CTL_FLAG_ABORT was only checked around
data moves, which for these commands may not happen for a very long time.
MFC after: 2 weeks
SPC-4 recommends T10 vendor ID based LUN ID was created by concatenating
product name and serial number (and istgt follows that). But product name
is 16 bytes long by itself, so 16 bytes total length is clearly not enough
to fit both.
To keep compatibility with existing configurations, pad short device IDs
to old length of 16, same as before.
This change probably breaks CTL user-level ABI, so control tools should
be rebuilt after this change.
MFC after: 2 weeks
for any outstanding commands to be properly aborted by CTL.
Without it, in some cases (such as files backing the LUNs
stored on failing disk drives), terminating a busy session
would result in panic.
Reviewed by: mav@ (earlier version)
Sponsored by: The FreeBSD Foundation
Make data_submit backends method support not only read and write requests,
but also two new ones: verify and compare. Verify just checks readability
of the data in specified location without transferring them outside.
Compare reads the specified data and compares them to received data,
returning error if they are different.
VERIFY(10/12/16) commands request either verify or compare from backend,
depending on BYTCHK CDB field. COMPARE AND WRITE command executed in two
stages: first it requests compare, and then, if succeesed, requests write.
Atomicity of operation is guarantied by CTL request ordering code.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
Instead of allocating up to 16MB or RAM at once to handle whole I/O,
allocate up to 1MB at a time, but do multiple ctl_datamove() and storage
I/Os if needed.
Unfortunately we can't check range collisions for UNMAP commands alike
to writes, because they include multiple ranges, which are also passed
in data block, not in CDB. As result, UNMAP commands have to be treated
as colliding with any other command accessing the media.
From the other side all UNMAPs are equal (we don't support ANCHOR flag),
so we can execute several UNMAPs same time.