The delta between SENTRY5 and BCM was already small due to BCM being
derived from SENTRY5; re-integrating the two avoids the maintenance
overhead of keeping them both in sync with bhnd(4) changes.
- Re-integrate minor SENTRY5 deltas in bcm_machdep.c
- Modify uart_cpu_chipc to allow specifying UART debug/console flags via
kenv and device hints.
- Switch SENTRY5 to std.broadcom
- Enabled CFI flash support for SENTRY5
Reviewed by: Michael Zhilin <mizkha@gmail.com> (Broadcom MIPS support)
Approved by: re (gjb), adrian (mentor)
Differential Revision: https://reviews.freebsd.org/D6897
and start teaching subsystems about it.
The Atheros MIPS platforms don't guarantee any kind of FIFO consistency
with interrupts in hardware. So software needs to do a flush when it
receives an interrupt and before it calls the interrupt handler.
There are new ones for the QCA934x and QCA955x, so do a few things:
* Get rid of the individual ones (for ethernet and IP2);
* Create a mux and enum listing all the variations on DDR flushes;
* replace the uses of IP2 with the relevant one (which will typically
be "PCI" here);
* call the USB DDR flush before calling the real USB interrupt handlers;
* call the ethernet one upon receiving an interrupt that's for us,
rather than never calling it during operation.
Tested:
* QCA9558 (TP-Link archer c7 v2)
* AR9331 (Carambola 2)
TODO:
* PCI, USB, ethernet, etc need to do a double-check to see if the
interrupt was truely for them before doing the DDR. For now I
prefer "correct" over "fast".
switch reset/initialise functions.
The AR934x and QC955x SoCs both have a configurable MDIO base clock.
The others have the MDIO clock use the same clock as the system
reference clock, whatever that may be.
Tested:
* AR9344 SoC
TODO:
* mips24k - AR933x would be fine for now, just to ensure that things
are sane.
For all pre-AR933x chips, the frequency is just the APB frequency.
For the AR933x, the UART frequency is different but we just hacked around
it.
For the AR934x, there's a different PLL setting for these, so they have
to be broken out.
* Flesh out the PLL configuration fetch function, which will return the PLL
configuration based on the unit number and speed.
* Remove the PLL speed config logic from the AR71xx/AR91xx chip PLL config
function - pass in a 'pll' value instead.
* Modify arge_set_pll() to:
+ fetch the PLL configuration
+ write the PLL configuration
+ update the MII speed configuration.
This will allow if_arge to override the PLL configuration as required.
Obtained from: Linux/Atheros/OpenWRT
* Add a new method to set the MII mode - GMII, RGMII, RMII, MII.
+ arge0 supports all four (two for non-Gige interfaces.)
+ arge1 only supports two (one for non-gige interfaces.)
* Set the MII clock speed when changing the MAC PLL speed.
+ Needed for AR91xx and AR71xx; not needed for AR724x.
Tested:
* AR71xx only, I'll do AR913x testing tonight and fix whichever issues
creep up.
TODO:
* Implement the missing AR7242 arge0 PLL configuration, but don't
adjust the MII speed accordingly.
* .. the AR7240/AR7241 don't require this, so make sure it's not set
accidentally.
Bugs (not fixed here):
* Statically configured arge speeds are still broken - investigate why
that is on the AP96 board. Autonegotiate is working fine, but there
still seems to be an occasionally heavy packet loss issue.
Obtained from: Linux/Atheros/OpenWRT
These are needed for some particular port configurations where the default
speed isn't suitable for all link speed types. (Ie, changing 10/100/1000MBit
PLL rate requires a similar MII clock rate, rather than a fixed MII rate.)
This is:
* only currently implemented for the ar71xx;
* isn't used anywhere (yet), as the final interface for this hasn't yet
been determined.
This is untested but should at least allow an AR724X to boot.
The current code is lacking the detail needed to expose the PCIe bus.
It is also lacking any NIC, PLL or flush/WB code.