driver would verify that requests for child devices were confined to any
existing I/O windows, but the driver relied on the firmware to initialize
the windows and would never grow the windows for new requests. Now the
driver actively manages the I/O windows.
This is implemented by allocating a bus resource for each I/O window from
the parent PCI bus and suballocating that resource to child devices. The
suballocations are managed by creating an rman for each I/O window. The
suballocated resources are mapped by passing the bus_activate_resource()
call up to the parent PCI bus. Windows are grown when needed by using
bus_adjust_resource() to adjust the resource allocated from the parent PCI
bus. If the adjust request succeeds, the window is adjusted and the
suballocation request for the child device is retried.
When growing a window, the rman_first_free_region() and
rman_last_free_region() routines are used to determine if the front or
end of the existing I/O window is free. From using that, the smallest
ranges that need to be added to either the front or back of the window
are computed. The driver will first try to grow the window in whichever
direction requires the smallest growth first followed by the other
direction if that fails.
Subtractive bridges will first attempt to satisfy requests for child
resources from I/O windows (including attempts to grow the windows). If
that fails, the request is passed up to the parent PCI bus directly
however.
The PCI-PCI bridge driver will try to use firmware-assigned ranges for
child BARs first and only allocate a "fresh" range if that specific range
cannot be accommodated in the I/O window. This allows systems where the
firmware assigns resources during boot but later wipes the I/O windows
(some ACPI BIOSen are known to do this) to "rediscover" the original I/O
window ranges.
The ACPI Host-PCI bridge driver has been adjusted to correctly honor
hw.acpi.host_mem_start and the I/O port equivalent when a PCI-PCI bridge
makes a wildcard request for an I/O window range.
The new PCI-PCI bridge driver is only enabled if the NEW_PCIB kernel option
is enabled. This is a transition aide to allow platforms that do not
yet support bus_activate_resource() and bus_adjust_resource() in their
Host-PCI bridge drivers (and possibly other drivers as needed) to use the
old driver for now. Once all platforms support the new driver, the
kernel option and old driver will be removed.
PR: kern/143874 kern/149306
Tested by: mav
allocated, not the maximum number of messages the device supports. The
spec only requires the former, and I believe I implemented the latter due
to misunderstanding an e-mail. In particular, this fixes an issue where
having several devices that all support 16 messages can run out of
IDT vectors on x86 even though the driver only uses a single message.
Submitted by: Bret Ketchum bcketchum of gmail
MFC after: 1 week
bus driver will now remember the size of a BAR obtained during the initial
bus scan and use that size when doing lazy resource allocation rather than
resizing the BAR. The bus driver will now also report unallocated BARs to
userland for display by 'pciconf -lb'. Psuedo-resources that are not BARs
(such as the implicit I/O port resources for master/slave ATA controllers)
will no longer be listed as BARs in 'pciconf -lb'. During resume, BARs are
restored from their new saved state instead of having the raw registers
saved and restored across resume. This also fixes restoring BARs at
unusual loactions if said BAR has been allocated by a driver.
Add a constant for the offset of the ROM BIOS BAR in PCI-PCI bridges and
properly handle ROM BIOS BARs in PCI-PCI bridges. The PCI bus now also
properly handles the lack of a ROM BIOS BAR in a PCI-Cardbus bridge.
Tested by: jkim
"extended capabilities" to refer to the new set of capability structures
starting at offset 0x100 in config space for PCI-express devices. For now
both function names will still work. I will merge this to older branches
to ease driver portability, but 9.0 will ship with a new pci_find_extcap()
function that locates extended capabilities instead.
Reviewed by: imp
MFC after: 1 week
chipsets that do not have an HT slave at 0:0:0:0. The Linux quirk is
actually specific to Nvidia chipsets and the check I had added was in
the wrong place.
Prodded by: nathanw
- Always enable the HyperTransport MSI mapping window for HyperTransport
to PCI bridges (these show up as HyperTransport slave devices).
The mapping windows in PCI-PCI bridges are enabled by existing code
in the PCI-PCI bridge driver as MSI requests propagate up the device
tree, but Host-PCI bridges don't really show up in that tree.
- If the PCI device at domain 0 bus 0 slot 0 function 0 is not a
HyperTransport device, then blacklist MSI on any other HT devices in
the system. Linux has a similar quirk.
PR: kern/155442
Tested by: Zack Dannar zdannar of gmail
MFC after: 1 week
causing the size calculation to be truncated to the size of an int
(32-bits on all current architectures).
Submitted by: Anish akgupt3 of gmail
MFC after: 1 week
within the first 4 bytes of the EHCI memory space. For controllers that
use big-endian MMIO, reading them with 1- and 2-byte reads would then
return the wrong values. Instead, read the combined register with a 4-byte
read and mask out the interesting quantities.
PCI-express or PCI-X capabilities if we are running in a virtual machine.
- Whitelist the Intel 82440 chipset used by QEMU.
Tested by: jfv
MFC after: 1 week
ignore BARs that are invalid due to having a size of zero, not to ignore
BARs with an existing base of zero. While here, reorganize the code
slightly to make the intent clearer.
Reported by: avg
MFC after: 1 week
Specification Rev. 1.2. Rename pp_pcmcsr field of PM capabilities to pp_bse
to avoid further confusions and adjust some comments accordingly. The real
PMCSR (Power Management Control/Status Register) is PCIR_POWER_STATUS and
it is actually BSE (PCI-to-PCI Bridge Support Extensions) register.
PCI status register to map its current name.
- Use PCIM_* rather than PCIR_* for constants for fields in various AER
registers. I got about half of them right in the previous commit.
MFC after: 1 week
PCI-express. I used PCIZ_* for ID constants (plain capability IDs use
PCIY_*).
- Add register definitions for the Advanced Error Reporting, Virtual
Channels, and Device Serial Number extended capabilities.
- Teach pciconf -c to list extended as well as plain capabilities. Adds
more detailed parsing for AER, VC, and device serial numbers.
MFC after: 2 weeks
method is used by the PCI bus driver to query the power management system
to determine the proper device state to be used for a device during suspend
and resume. For the ACPI PCI bridge drivers this calls
acpi_device_pwr_for_sleep(). This removes ACPI-specific knowledge from
the PCI and PCI-PCI bridge drivers.
Reviewed by: jkim
bus_generic_resume() since the pci_link(4) driver was added.
- Change the ACPI PCI-PCI bridge driver to inherit most of its methods
from the generic PCI-PCI bridge driver. In particular, this will now
restore PCI config registers for ACPI PCI-PCI bridges.
Tested by: Oleg Sharoyko osharoiko of gmail
Powermac G5 systems. MSI and several other things are not presently
supported.
The U3/U4 internal device support portions of this change were contributed
by Andreas Tobler.
MFC after: 1 week
pci_delete_child() function called by the cardbus driver. The new function
uses resource_list_unreserve() to release the BARs decoded by the device
being removed.
Reviewed by: imp
Tested by: brooks
handling for the PCIR_BIOS decoding enable bit from the cardbus driver.
The PCIR_BIOS BAR does include type bits like other BARs. Instead, it is
always a 32-bit non-prefetchable memory BAR where the low bit is used as a
flag to enable decoding.
Reviewed by: imp
are not allocated by the device driver. These resources should still appear
allocated from the system's perspective so that their assigned ranges are
not reused by other resource requests. The PCI bus driver has used a hack
to effect this for a while now where it uses rman_set_device() to assign
devices to the PCI bus when they are first encountered and later assigns
them to the actual device when a driver allocates a BAR. A few downsides of
this approach is that it results in somewhat confusing devinfo -r output as
well as not being very easily portable to other bus drivers.
This commit adds generic support for "reserved" resources to the resource
list API used by many bus drivers to manage the resources of child devices.
A resource may be reserved via resource_list_reserve(). This will allocate
the resource from the bus' parent without activating it.
resource_list_alloc() recognizes an attempt to allocate a reserved resource.
When this happens it activates the resource (if requested) and then returns
the reserved resource. Similarly, when a reserved resource is released via
resource_list_release(), it is deactivated (if it is active) and the
resource is then marked reserved again, but is left allocated from the
bus' parent. To completely remove a reserved resource, a bus driver may
use resource_list_unreserve(). A bus driver may use resource_list_busy()
to determine if a reserved resource is allocated by a child device or if
it can be unreserved.
The PCI bus driver has been changed to use this framework instead of
abusing rman_set_device() to keep track of reserved vs allocated resources.
Submitted by: imp (an older version many moons ago)
MFC after: 1 month
itself to an associated PCI device if it exists. It is little bit hackish
but it should fix build without frame buffer driver since r198964.
Fix some style(9) nits in vga_isa.c while we are here.
Have the early USB takeover enabled for i386 and amd64
by default.
This also avoids a panic on PowerPC where the resource
isn't released properly and we find a busy resource
when the USB host controller wants to allocate it...
- Do not map entire real mode memory (1MB). Instead, we map IVT/BDA and
ROM area separately. Most notably, ROM area is mapped as device memory
(uncacheable) as it should be. User memory is dynamically allocated and
free'ed with contigmalloc(9) and contigfree(9). Remove now redundant and
potentially dangerous x86bios_alloc.c. If this emulator ever grows to
support non-PC hardware, we may implement it with rman(9) later.
- Move all host-specific initializations from x86emu_util.c to x86bios.c and
remove now unnecessary x86emu_util.c. Currently, non-PC hardware is not
supported. We may use bus_space(9) later when the KPI is fixed.
- Replace all bzero() calls for emulated registers with more obviously named
x86bios_init_regs(). This function also initializes DS and SS properly.
- Add x86bios_get_intr(). This function checks if the interrupt vector is
available for the platform. It is not necessary for PC-compatible hardware
but it may be needed later. ;-)
- Do not try turning off monitor if DPMS does not support the state.
- Allocate stable memory for VESA OEM strings instead of just holding
pointers to them. They may or may not be accessible always. Fix a memory
leak of video mode table while I am here.
- Add (experimental) BIOS POST call for vesa(4). This function calls VGA
BIOS POST code from the current VGA option ROM. Some video controllers
cannot save and restore the state properly even if it is claimed to be
supported. Usually the symptom is blank display after resuming from suspend
state. If the video mode does not match the previous mode after restoring,
we try BIOS POST and force the known good initial state. Some magic was
taken from NetBSD (and it was taken from vbetool, I believe.)
- Add a loader tunable for vgapci(4) to give a hint to dpms(4) and vesa(4)
to identify who owns the VESA BIOS. This is very useful for multi-display
adapter setup. By default, the POST video controller is automatically
probed and the tunable "hw.pci.default_vgapci_unit" is set to corresponding
vgapci unit number. You may override it from loader but it is very unlikely
to be necessary. Unfortunately only AGP/PCI/PCI-E controllers can be
matched because ISA controller does not have necessary device IDs.
- Fix a long standing bug in state save/restore function. The state buffer
pointer should be ES:BX, not ES:DI according to VBE 3.0. If it ever worked,
that's because BX was always zero. :-)
- Clean up register initializations more clearer per VBE 3.0.
- Fix a lot of style issues with vesa(4).
all host controllers at the same time, we avoid problems where the BIOS will
actually write to the USB registers of all the USB host controllers every time
we handover one of them, and consequently reset the OS programmed values.
Submitted by: avg
Reviewed by: jhb