- Rename REG_DL to REG_DLL and REG_DLH.
- Always treat DLL and DLH as two separate 8-bit registers instead of one
16-bit register.
Additionally, remove the probe for the high 4 bits of IER being 0 and don't
assume we can always read/write 0 to/from those bits.
These changes allow uart(4) to drive the UARTs on the Intel XScale PXA255.
Reviewed by: marcel
parameter optional.
- Add Read_Node_List command which prints a list of available HCI nodes,
their Netgraph IDs and connected hooks
Reviewed by: emax
Approved by: emax
MFC after: 1 week
- Skip PnP devices as some wedge when trying to probe them as C-NET(98)S.
This fix makes le(4) actually work with the C-NET(98)S.
Reviewed by: marius
Tested by: Watanabe Kazuhiro < CQG00620 at nifty dot ne dot jp >
Checking if the queues are empty is not enough for the crypto_proc thread
(it is enough for the crypto_ret_thread), because drivers can be marked
as blocked. In a situation where we have operations related to different
crypto drivers in the queue, it is possible that one driver is marked as
blocked. In this case, the queue will not be empty and we won't wakeup
the crypto_proc thread to execute operations for the others drivers.
Simply setting a global variable to 1 when we goes to sleep and setting
it back to 0 when we wake up is sufficient. The variable is protected
with the queue lock.
Before the change if the thread was working on symmetric operation, we
would send unnecessary wakeup after adding asymmetric operation (when
asym queue was empty) and vice versa.
twice if we call crypto_kinvoke() from crypto_proc thread.
This change also removes unprotected access to cc_kqblocked field
(CRYPTO_Q_LOCK() should be used for protection).
where crypto_invoke() returns ERESTART and before we set cc_qblocked to 1,
crypto_unblock() is called and sets it to 0. This way we mark device as
blocked forever.
Fix it by not setting cc_qblocked in the fast path and by protecting
crypto_invoke() in the crypto_proc thread with CRYPTO_Q_LOCK().
This won't slow things down, because there is no contention - we have
only one crypto thread. Actually it can be slightly faster, because we
save two atomic ops per crypto request.
The fast code path remains lock-less.
Be cognizant as to whether we're running 2KLogin f/w in target mode and
do the appropriate loopid load based upon that.
Do a first cut (seems to work, at least for amd64) at 64 bit target
mode for fibre channel cards. We could probably also do it for SPI
cards, but that's not supported right now.
report this as an allocation failure for the item type. The failure
will be separately recorded with the bucket type. This my eliminate
high mbuf allocation failure counts under some circumstances, which
can be alarming in appearance, but not actually a problem in
practice.
MFC after: 2 weeks
Reported by: ps, Peter J. Blok <pblok at bsd4all dot org>,
OxY <oxy at field dot hu>,
Gabor MICSKO <gmicskoa at szintezis dot hu>