page_list using the matching malloc type for the allocation.
Approved by: re
Reviewed by: scottl [1]
MFC after: 1 week
[1] Original patch was against xpt_cam.c, prior to the cam refactoring.
modularize it so that new transports can be created.
Add a transport for SATA
Add a periph+protocol layer for ATA
Add a driver for AHCI-compliant hardware.
Add a maxio field to CAM so that drivers can advertise their max
I/O capability. Modify various drivers so that they are insulated
from the value of MAXPHYS.
The new ATA/SATA code supports AHCI-compliant hardware, and will override
the classic ATA driver if it is loaded as a module at boot time or compiled
into the kernel. The stack now support NCQ (tagged queueing) for increased
performance on modern SATA drives. It also supports port multipliers.
ATA drives are accessed via 'ada' device nodes. ATAPI drives are
accessed via 'cd' device nodes. They can all be enumerated and manipulated
via camcontrol, just like SCSI drives. SCSI commands are not translated to
their ATA equivalents; ATA native commands are used throughout the entire
stack, including camcontrol. See the camcontrol manpage for further
details. Testing this code may require that you update your fstab, and
possibly modify your BIOS to enable AHCI functionality, if available.
This code is very experimental at the moment. The userland ABI/API has
changed, so applications will need to be recompiled. It may change
further in the near future. The 'ada' device name may also change as
more infrastructure is completed in this project. The goal is to
eventually put all CAM busses and devices until newbus, allowing for
interesting topology and management options.
Few functional changes will be seen with existing SCSI/SAS/FC drivers,
though the userland ABI has still changed. In the future, transports
specific modules for SAS and FC may appear in order to better support
the topologies and capabilities of these technologies.
The modularization of CAM and the addition of the ATA/SATA modules is
meant to break CAM out of the mold of being specific to SCSI, letting it
grow to be a framework for arbitrary transports and protocols. It also
allows drivers to be written to support discrete hardware without
jeopardizing the stability of non-related hardware. While only an AHCI
driver is provided now, a Silicon Image driver is also in the works.
Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware
is possible and encouraged. Help with new transports is also encouraged.
Submitted by: scottl, mav
Approved by: re
Note that this does not actually enable full-range i/o requests for
64 architectures, and is done now to update KBI only.
Tested by: pho
Reviewed by: jhb, bde (as part of the review of the bigger patch)
int. All of its callers pass in cmd as a u_long, so this has
always been a dangerous type demotion. It was spooted by clang/llvm
trying to do a type promotion and sign extension within
cam_periph_ioctl.
Submitted by: rdivacky
vnode interlock to protect the knote fields [1]. The locking assumes
that shared vnode lock is held, thus we get exclusive access to knote
either by exclusive vnode lock protection, or by shared vnode lock +
vnode interlock.
Do not use kl_locked() method to assert either lock ownership or the
fact that curthread does not own the lock. For shared locks, ownership
is not recorded, e.g. VOP_ISLOCKED can return LK_SHARED for the shared
lock not owned by curthread, causing false positives in kqueue subsystem
assertions about knlist lock.
Remove kl_locked method from knlist lock vector, and add two separate
assertion methods kl_assert_locked and kl_assert_unlocked, that are
supposed to use proper asserts. Change knlist_init accordingly.
Add convenience function knlist_init_mtx to reduce number of arguments
for typical knlist initialization.
Submitted by: jhb [1]
Noted by: jhb [2]
Reviewed by: jhb
Tested by: rnoland
The device index number stored in the unit number of sa(4) devices is
only used to print debug messages. Get rid of this index number and use
devtoname() to just print the entire device name.
a serial number, fall through to the next case so that initial negotiation
still happens. Without this, devices were showing up with only 1 available
tag opening, leading to observations of very poor I/O performance.
This should fix problems reported with VMWare Fusion and ESX. Early
generation MPT-SAS controllers with SATA disks might also be affected.
HP CISS controllers are also likely affected, as are many other
pseudo-scsi disk subsystems.
things around so the periph destructors look alike. Based on a patch
by Jaakko Heinonen.
Submitted by: Jaakko Heinonen
Reviewed by: scottl
Approved by: rwatson (mentor)
Sponsored by: FreeBSD Foundation
created by atapicam is being kept opened or mounted. This is probably just
a temporary solution until we invent something better.
Reviewed by: scottl
Approved by: rwatson (mentor)
Sponsored by: FreeBSD Foundation
Reported by: Jaakko Heinonen
This fixes problems with discovering some USB devices that are very slow to
respond during initialisation.
When a USB device is inserted, CAM performs the sequence:
1) INQUIRY
2) INQUIRY (second time with other parameters)
3) TEST UNIT READY
4) READ CAPACITY
Before this change CAM didn't check if TEST UNIT READY was successful and went
on blindly to the next state and sent READ CAPACITY. If the device was still
not ready by then, CAM ended with error message. This patch adds checking for the
status of TEST UNIT READY command and retrying up to 10 times with 0.5 sec
interval.
Submitted by: Grzegorz Bernacki gjb ! semihalf dot com
Reviewed by: scottl
When trying to read scratched or damaged CDs and DVDs, the default
mechanism is sub-optimal. Programs like ddrescue do much better if
you turn off retries entirely, since their algorithms are designed
scan big areas fast, then winnow the areas down. Turning off retries
speeds these programs up by as much as 20x, since the drive is able to
'stream past' many small errors...
The sysctl/tunable kern.cam.cd.retry_count controls this. That
defaults to '4' (for a total of 5 attempts). Setting to 0 turns off
all retry attempts.
Reviewed by: scottl@
does - in DragonFly, it's cam_sim_release() what actually frees the
SIM; cam_sim_free does nothing more than calling cam_sim_release().
Here, we drain in cam_sim_free, waiting for refcount to drop to zero.
We cannot do the same think DragonFly does, because after cam_sim_free
returns, client would destroy the sim->mtx, and CAM would trip over
an initialized mutex.
Reviewed by: scottl
Approved by: rwatson (mentor)
Sponsored by: FreeBSD Foundation
to actually use it would panic on mtx operation, as dead_sim doesn't
have a proper mutex. Even if it had a properly initialized mutex,
it wouldn't have properly locked and owned one.
Reviewed by: scottl
Approved by: rwatson (mentor)
Sponsored by: FreeBSD Foundation