to take care of the KAME IPv6 code which needs ovbcopy() because NetBSD's
bcopy() doesn't handle overlap like ours.
Remove all implementations of ovbcopy().
Previously, bzero was a function pointer on i386, to save a jmp to
bzero_vector. Get rid of this microoptimization as it only confuses
things, adds machine-dependent code to an MD header, and doesn't really
save all that much.
This commit does not add my pagezero() / pagecopy() code.
Move the remaining bits of <sys/diskslice.h> to <i386/include/bootinfo.h>
Move i386/pc98 specific bits from <sys/reboot.h> to
<i386/include/bootinfo.h> as well.
Adjust includes in sys/boot accordingly.
as it could be and can do with some more cleanup. Currently its under
options LAZY_SWITCH. What this does is avoid %cr3 reloads for short
context switches that do not involve another user process. ie: we can
take an interrupt, switch to a kthread and return to the user without
explicitly flushing the tlb. However, this isn't as exciting as it could
be, the interrupt overhead is still high and too much blocks on Giant
still. There are some debug sysctls, for stats and for an on/off switch.
The main problem with doing this has been "what if the process that you're
running on exits while we're borrowing its address space?" - in this case
we use an IPI to give it a kick when we're about to reclaim the pmap.
Its not compiled in unless you add the LAZY_SWITCH option. I want to fix a
few more things and get some more feedback before turning it on by default.
This is NOT a replacement for Bosko's lazy interrupt stuff. This was more
meant for the kthread case, while his was for interrupts. Mine helps a
little for interrupts, but his helps a lot more.
The stats are enabled with options SWTCH_OPTIM_STATS - this has been a
pseudo-option for years, I just added a bunch of stuff to it.
One non-trivial change was to select a new thread before calling
cpu_switch() in the first place. This allows us to catch the silly
case of doing a cpu_switch() to the current process. This happens
uncomfortably often. This simplifies a bit of the asm code in cpu_switch
(no longer have to call choosethread() in the middle). This has been
implemented on i386 and (thanks to jake) sparc64. The others will come
soon. This is actually seperate to the lazy switch stuff.
Glanced at by: jake, jhb
kernel opition 'options PAE'. This will only work with device drivers which
either use busdma, or are able to handle 64 bit physical addresses.
Thanks to Lanny Baron from FreeBSD Systems for the loan of a test machine
with 6 gigs of ram.
Sponsored by: DARPA, Network Associates Laboratories, FreeBSD Systems
accessing an alternate address space this causes 1 page table page at
a time to be mapped in, rather than using the recursive mapping technique
to map in an entire alternate address space. The recursive mapping
technique changes large portions of the address space and requires global
tlb flushes, which seem to cause problems when PAE is enabled. This will
also allow IPIs to be avoided when mapping in new page table pages using
the same technique as is used for pmap_copy_page and pmap_zero_page.
Sponsored by: DARPA, Network Associates Laboratories
This keeps the logical cpu's halted in the idle loop. By default
the logical cpu's are halted at startup. It is also possible to
halt any cpu in the idle loop now using machdep.hlt_cpus.
Examples of how to use this:
machdep.hlt_cpus=1 halt cpu0
machdep.hlt_cpus=2 halt cpu1
machdep.hlt_cpus=4 halt cpu2
machdep.hlt_cpus=3 halt cpu0,cpu1
Reviewed by: jhb, peter
where physical addresses larger than virtual addresses, such as i386s
with PAE.
- Use this to represent physical addresses in the MI vm system and in the
i386 pmap code. This also changes the paddr parameter to d_mmap_t.
- Fix printf formats to handle physical addresses >4G in the i386 memory
detection code, and due to kvtop returning vm_paddr_t instead of u_long.
Note that this is a name change only; vm_paddr_t is still the same as
vm_offset_t on all currently supported platforms.
Sponsored by: DARPA, Network Associates Laboratories
Discussed with: re, phk (cdevsw change)
4 bits. This reportedly fixes booting on the SW7500CW2. Much thanks to
the submitter for tracking this down!
Submitted by: Brian Buchanan <brian@ncircle.com>
Reviewed by: peter
MFC after: 3 days
are machine dependent because they are not required to update the tlb when
mappings are added or removed, and doing so is machine dependent.
In addition, an implementation may require that pages mapped with pmap_kenter
have a backing vm_page_t, which is not necessarily true of all physical
pages, and so may choose to pass the vm_page_t to pmap_kenter instead of the
physical address in order to make this requirement clear.
for testing and setting the current and alternate address spaces.
- Changed PTDpde and APTDpde to arrays to support multiple page directory
pages.
ponsored by: DARPA, Network Associates Laboratories
- Changed VM_MAXUSER_ADDRESS to be defined in terms of PTDPTDI. In order for
assumptions about the recursive page table map to work it must be the base
of the recursive map. Any pte offset that's not NPTEPG will break these
assumptions.
Sponsored by: DARPA, Network Associates Laboratories
page directory.
- Use these instead of the magic constants 1 or PAGE_SIZE where appropriate.
There are still numerous assumptions that the page directory is exactly
1 page.
Sponsored by: DARPA, Network Associates Laboratories
#if'ed out for a while. Complete the deed and tidy up some other bits.
We need to be able to call this stuff from outer edges of interrupt
handlers for devices that have the ISR bits in pci config space. Making
the bios code mpsafe was just too hairy. We had also stubbed it out some
time ago due to there simply being too much brokenness in too many systems.
This adds a leaf lock so that it is safe to use pci_read_config() and
pci_write_config() from interrupt handlers. We still will use pcibios
to do interrupt routing if there is no acpi.. [yes, I tested this]
Briefly glanced at by: imp
o Add a MD header private to libc called _fpmath.h; this header
contains bitfield layouts of MD floating-point types.
o Add a MI header private to libc called fpmath.h; this header
contains bitfield layouts of MI floating-point types.
o Add private libc variables to lib/libc/$arch/gen/infinity.c for
storing NaN values.
o Add __double_t and __float_t to <machine/_types.h>, and provide
double_t and float_t typedefs in <math.h>.
o Add some C99 manifest constants (FP_ILOGB0, FP_ILOGBNAN, HUGE_VALF,
HUGE_VALL, INFINITY, NAN, and return values for fpclassify()) to
<math.h> and others (FLT_EVAL_METHOD, DECIMAL_DIG) to <float.h> via
<machine/float.h>.
o Add C99 macro fpclassify() which calls __fpclassify{d,f,l}() based
on the size of its argument. __fpclassifyl() is never called on
alpha because (sizeof(long double) == sizeof(double)), which is good
since __fpclassifyl() can't deal with such a small `long double'.
This was developed by David Schultz and myself with input from bde and
fenner.
PR: 23103
Submitted by: David Schultz <dschultz@uclink.Berkeley.EDU>
(significant portions)
Reviewed by: bde, fenner (earlier versions)
Remove all the stuff that does not relate to the TSC.
Change the calibration to use DELAY(1000000) rather than trying to check
it against the CMOS RTC, this drastically increases precision:
Using 25 samples on a Athlon 700MHz UP machine I find:
stddev min max average
CMOS 22200 Hz -74980 Hz 34301 Hz 704928721 Hz
DELAY 1805 Hz -1984 Hz 2678 Hz 704937583 Hz
(The difference between the two averages is not statistically significant.)
expressed in PPM of the frequency:
stddev min max
CMOS 31.49 PPM -106.37 PPM 48.66 PPM
DELAY 2.56 PPM 2.81 PPM 3.80 PPM
This code will not be used until a followup commit to sys/isa/clock.c
and sys/pc98/pc98/clock.c which will only happen after some field testing.
statclock based on profhz when profiling is enabled MD, since most platforms
don't use this anyway. This removes the need for statclock_process, whose
only purpose was to subdivide profhz, and gets the profiling clock running
outside of sched_lock on platforms that implement suswintr.
Also changed the interface for starting and stopping the profiling clock to
do just that, instead of changing the rate of statclock, since they can now
be separate.
Reviewed by: jhb, tmm
Tested on: i386, sparc64
I'm not convinced there is anything major wrong with the patch but
them's the rules..
I am using my "David's mentor" hat to revert this as he's
offline for a while.
counterparts to bus_dmamem_alloc() and bus_dmamem_free(). This allows
the caller to specify the size of the allocation instead of it defaulting
to the max_size field of the busdma tag.
This is intended to aid in converting drivers to busdma. Lots of
hardware cannot understand scatter/gather lists, which forces the
driver to copy the i/o buffers to a single contiguous region
before sending it to the hardware. Without these new methods, this
would require a new busdma tag for each operation, or a complex
internal allocator/cache for each driver.
Allocations greater than PAGE_SIZE are rounded up to the next
PAGE_SIZE by contigmalloc(), so this is not suitable for multiple
static allocations that would be better served by a single
fixed-length subdivided allocation.
Reviewed by: jake (sparc64)
- Sort definition of cpu_* variables appropriately.
- Move cpu_fxsr out of the magic non-BSS set of variables and stick it in
the BSS along with hw_instruction_sse (make the latter static as well).
Submitted by: bde (partially)
variable to something in the cpu_* namespace since that's what all the
other cpuid variables were named and cpu_procinfo is what I came up with.
Requested by: bde
<machine/ieeefp.h> where it belongs.
o Remove the i386 specific inclusion of <machine/floatingpoint.h>
from <ieeefp.h>, now that including <machine/ieeefp.h> is enough
for all architectures.
o Allow <machine/ieeefp.h> to inline the functions exposed by the
headers by checking for _IEEEFP_INLINED_ in the MI header. When
defined, prototypes are not given and it is assumed that the MD
headers, when inlining only a subset of the functions provide
prototypes for the functions not being inlined.
Based on patch from: Terry Lambert <tlambert2@mindspring.com>
Tested with: make release.
Interface (SMAPI) BIOS, which is present on some IBM
Thinkpad models (560, 600, 770 to name a few.)
The SMAPI BIOS provides access to System Information,
System Configuration, and Power Management.
cpu_exthigh and cpu_brand in printcpuinfo() instead of in identify_cpu().
We also only do it for known-good values of cpu_vendor which is a bit more
conservative.
Reviewed by: bde (mostly)
returned from cpuid 0x80000000.
- Add a cpu_brand char array to hold the processor name returned by
cpuid 0x80000002-0x80000004 on AMD, Intel, Transmeta, and possibly
other CPUs.
- Use cpuid to set cpu_exthigh and read the processor name if it is present
in identify_cpu().
in the mptable. The way this works is that we determine if the system
has hyperthreading and how many logical CPU's should be in each physical
CPU by using the information returned by cpuid. During the first pass of
the mptable, we build a bitmask of the APIC IDs of the CPUs listed in the
mptable. We then scan that bitmask to see if the CPUs are already listed
by the mptable, or if there are any APIC IDs already in use that would
conflict with the APIC IDs of the logical CPUs. If that test succeeds,
then we fixup the count of application processors. Later on during the
second pass of the mptable we create fake processor entries for logical
CPUs and add them to the system.
We only need this type of fixup hack when using the mptable to enumerate
CPUs. The ACPI MADT table properly enumerates all logical CPUs.