begun with a repo-copy of mac.h to mac_framework.h. sys/mac.h now
contains the userspace and user<->kernel API and definitions, with all
in-kernel interfaces moved to mac_framework.h, which is now included
across most of the kernel instead.
This change is the first step in a larger cleanup and sweep of MAC
Framework interfaces in the kernel, and will not be MFC'd.
Obtained from: TrustedBSD Project
Sponsored by: SPARTA
When porting FreeBSD to a new platform, one of the more useful things to do is
get mi_startup() to let you know which SYSINIT it's up to. Most people tend to
whack a printf in the SYSINIT loop to print the address of the function it's
about to call. Going one better, jhb made a version that uses DDB to look up
the name of the function and print that instead. This version is essentially
his with the addition of some ifdeffery to make it optional and to allow it to
work (although using only the function address, not the symbol) if you forgot
to enable DDB.
All the cool bits by: jhb
Approved by: scottl, rink, cognet, imp
Keep track of time spent by the cpu in various contexts in units of
"cputicks" and scale to real-world microsec^H^H^H^H^H^H^H^Hclock_t
only when somebody wants to inspect the numbers.
For now "cputicks" are still derived from the current timecounter
and therefore things should by definition remain sensible also on
SMP machines. (The main reason for this first milestone commit is
to verify that hypothesis.)
On slower machines, the avoided multiplications to normalize timestams
at every context switch, comes out as a 5-7% better score on the
unixbench/context1 microbenchmark. On more modern hardware no change
in performance is seen.
reliability when tracing fast-moving processes or writing traces to
slow file systems by avoiding unbounded queueuing and dropped records.
Record loss was previously possible when the global pool of records
become depleted as a result of record generation outstripping record
commit, which occurred quickly in many common situations.
These changes partially restore the 4.x model of committing ktrace
records at the point of trace generation (synchronous), but maintain
the 5.x deferred record commit behavior (asynchronous) for situations
where entering VFS and sleeping is not possible (i.e., in the
scheduler). Records are now queued per-process as opposed to
globally, with processes responsible for committing records from their
own context as required.
- Eliminate the ktrace worker thread and global record queue, as they
are no longer used. Keep the global free record list, as records
are still used.
- Add a per-process record queue, which will hold any asynchronously
generated records, such as from context switches. This replaces the
global queue as the place to submit asynchronous records to.
- When a record is committed asynchronously, simply queue it to the
process.
- When a record is committed synchronously, first drain any pending
per-process records in order to maintain ordering as best we can.
Currently ordering between competing threads is provided via a global
ktrace_sx, but a per-process flag or lock may be desirable in the
future.
- When a process returns to user space following a system call, trap,
signal delivery, etc, flush any pending records.
- When a process exits, flush any pending records.
- Assert on process tear-down that there are no pending records.
- Slightly abstract the notion of being "in ktrace", which is used to
prevent the recursive generation of records, as well as generating
traces for ktrace events.
Future work here might look at changing the set of events marked for
synchronous and asynchronous record generation, re-balancing queue
depth, timeliness of commit to disk, and so on. I.e., performing a
drain every (n) records.
MFC after: 1 month
Discussed with: jhb
Requested by: Marc Olzheim <marcolz at stack dot nl>
provided access to the root file system before the start of the
init process. This was used briefly by SEBSD before it knew about
preloading data in the loader, and using that method to gain
access to data earlier results in fewer inconsistencies in the
approach. Policy modules still have access to the root file system
creation event through the mac_create_mount() entry point.
Removed now, and will be removed from RELENG_6, in order to gain
third party policy dependencies on the entry point for the lifetime
of the 6.x branch.
MFC after: 3 days
Submitted by: Chris Vance <Christopher dot Vance at SPARTA dot com>
Sponsored by: SPARTA
shutdown procedures (which have a duration of more than 120 seconds).
We have two user-space affecting shutdown timeouts: a "soft" one in
/etc/rc.shutdown and a "hard" one in init(8). The first one can be
configured via /etc/rc.conf variable "rcshutdown_timeout" and defaults
to 30 seconds. The second one was originally (in 1998) intended to be
configured via sysctl(8) variable "kern.shutdown_timeout" and defaults
to 120 seconds.
Unfortunately, the "kern.shutdown_timeout" was declared "unused" in 1999
(as it obviously is actually not used within the kernel itself) and
hence was intentionally but misleadingly removed in revision 1.107 from
init_main.c. Kernel sysctl(8) variables are certainly a wrong way to
control user-space processes in general, but in this particular case the
sysctl(8) variable should have remained as it supports init(8), which
isn't passed command line flags (which in turn could have been set via
/etc/rc.conf), etc.
As there is already a similar "kern.init_path" sysctl(8) variable which
directly affects init(8), resurrect the init(8) shutdown timeout under
sysctl(8) variable "kern.init_shutdown_timeout". But this time document
it as being intentionally unused within the kernel and used by init(8).
Also document it in the manpages init(8) and rc.conf(5).
Reviewed by: phk
MFC after: 2 weeks
- Introducing the possibility of using locks different than mutexes
for the knlist locking. In order to do this, we add three arguments to
knlist_init() to specify the functions to use to lock, unlock and
check if the lock is owned. If these arguments are NULL, we assume
mtx_lock, mtx_unlock and mtx_owned, respectively.
- Using the vnode lock for the knlist locking, when doing kqueue operations
on a vnode. This way, we don't have to lock the vnode while holding a
mutex, in filt_vfsread.
Reviewed by: jmg
Approved by: re (scottl), scottl (mentor override)
Pointyhat to: ssouhlal
Will be happy: everyone
split the conversion of the remaining three filesystems out from the root
mounting changes, so in one go:
cd9660:
Convert to nmount.
Add omount compat shims.
Remove dedicated rootfs mounting code.
Use vfs_mountedfrom()
Rely on vfs_mount.c calling VFS_STATFS()
nfs(client):
Convert to nmount (the simple way, mount_nfs(8) is still necessary).
Add omount compat shims.
Drop COMPAT_PRELITE2 mount arg compatibility.
ffs:
Convert to nmount.
Add omount compat shims.
Remove dedicated rootfs mounting code.
Use vfs_mountedfrom()
Rely on vfs_mount.c calling VFS_STATFS()
Remove vfs_omount() method, all filesystems are now converted.
Remove MNTK_WANTRDWR, handling RO/RW conversions is a filesystem
task, and they all do it now.
Change rootmounting to use DEVFS trampoline:
vfs_mount.c:
Mount devfs on /. Devfs needs no 'from' so this is clean.
symlink /dev to /. This makes it possible to lookup /dev/foo.
Mount "real" root filesystem on /.
Surgically move the devfs mountpoint from under the real root
filesystem onto /dev in the real root filesystem.
Remove now unnecessary getdiskbyname().
kern_init.c:
Don't do devfs mounting and rootvnode assignment here, it was
already handled by vfs_mount.c.
Remove now unused bdevvp(), addaliasu() and addalias(). Put the
few necessary lines in devfs where they belong. This eliminates the
second-last source of bogo vnodes, leaving only the lemming-syncer.
Remove rootdev variable, it doesn't give meaning in a global context and
was not trustworth anyway. Correct information is provided by
statfs(/).
the raw values including for child process statistics and only compute the
system and user timevals on demand.
- Fix the various kern_wait() syscall wrappers to only pass in a rusage
pointer if they are going to use the result.
- Add a kern_getrusage() function for the ABI syscalls to use so that they
don't have to play stackgap games to call getrusage().
- Fix the svr4_sys_times() syscall to just call calcru() to calculate the
times it needs rather than calling getrusage() twice with associated
stackgap, etc.
- Add a new rusage_ext structure to store raw time stats such as tick counts
for user, system, and interrupt time as well as a bintime of the total
runtime. A new p_rux field in struct proc replaces the same inline fields
from struct proc (i.e. p_[isu]ticks, p_[isu]u, and p_runtime). A new p_crux
field in struct proc contains the "raw" child time usage statistics.
ruadd() has been changed to handle adding the associated rusage_ext
structures as well as the values in rusage. Effectively, the values in
rusage_ext replace the ru_utime and ru_stime values in struct rusage. These
two fields in struct rusage are no longer used in the kernel.
- calcru() has been split into a static worker function calcru1() that
calculates appropriate timevals for user and system time as well as updating
the rux_[isu]u fields of a passed in rusage_ext structure. calcru() uses a
copy of the process' p_rux structure to compute the timevals after updating
the runtime appropriately if any of the threads in that process are
currently executing. It also now only locks sched_lock internally while
doing the rux_runtime fixup. calcru() now only requires the caller to
hold the proc lock and calcru1() only requires the proc lock internally.
calcru() also no longer allows callers to ask for an interrupt timeval
since none of them actually did.
- calcru() now correctly handles threads executing on other CPUs.
- A new calccru() function computes the child system and user timevals by
calling calcru1() on p_crux. Note that this means that any code that wants
child times must now call this function rather than reading from p_cru
directly. This function also requires the proc lock.
- This finishes the locking for rusage and friends so some of the Giant locks
in exit1() and kern_wait() are now gone.
- The locking in ttyinfo() has been tweaked so that a shared lock of the
proctree lock is used to protect the process group rather than the process
group lock. By holding this lock until the end of the function we now
ensure that the process/thread that we pick to dump info about will no
longer vanish while we are trying to output its info to the console.
Submitted by: bde (mostly)
MFC after: 1 month
but with slightly cleaned up interfaces.
The KSE structure has become the same as the "per thread scheduler
private data" structure. In order to not make the diffs too great
one is #defined as the other at this time.
The KSE (or td_sched) structure is now allocated per thread and has no
allocation code of its own.
Concurrency for a KSEGRP is now kept track of via a simple pair of counters
rather than using KSE structures as tokens.
Since the KSE structure is different in each scheduler, kern_switch.c
is now included at the end of each scheduler. Nothing outside the
scheduler knows the contents of the KSE (aka td_sched) structure.
The fields in the ksegrp structure that are to do with the scheduler's
queueing mechanisms are now moved to the kg_sched structure.
(per ksegrp scheduler private data structure). In other words how the
scheduler queues and keeps track of threads is no-one's business except
the scheduler's. This should allow people to write experimental
schedulers with completely different internal structuring.
A scheduler call sched_set_concurrency(kg, N) has been added that
notifies teh scheduler that no more than N threads from that ksegrp
should be allowed to be on concurrently scheduled. This is also
used to enforce 'fainess' at this time so that a ksegrp with
10000 threads can not swamp a the run queue and force out a process
with 1 thread, since the current code will not set the concurrency above
NCPU, and both schedulers will not allow more than that many
onto the system run queue at a time. Each scheduler should eventualy develop
their own methods to do this now that they are effectively separated.
Rejig libthr's kernel interface to follow the same code paths as
linkse for scope system threads. This has slightly hurt libthr's performance
but I will work to recover as much of it as I can.
Thread exit code has been cleaned up greatly.
exit and exec code now transitions a process back to
'standard non-threaded mode' before taking the next step.
Reviewed by: scottl, peter
MFC after: 1 week
a more complete subsystem, and removes the knowlege of how things are
implemented from the drivers. Include locking around filter ops, so a
module like aio will know when not to be unloaded if there are outstanding
knotes using it's filter ops.
Currently, it uses the MTX_DUPOK even though it is not always safe to
aquire duplicate locks. Witness currently doesn't support the ability
to discover if a dup lock is ok (in some cases).
Reviewed by: green, rwatson (both earlier versions)
Add local rootvp variables as needed.
Remove checks for miniroot's in the swappartition. We never did that
and most of the filesystems could never be used for that, but it had
still been copy&pasted all over the place.
This is to allow filesystems to decide based on the passed thread
which vnode to return.
Several filesystems used curthread, they now use the passed thread.
- struct plimit includes a mutex to protect a reference count. The plimit
structure is treated similarly to struct ucred in that is is always copy
on write, so having a reference to a structure is sufficient to read from
it without needing a further lock.
- The proc lock protects the p_limit pointer and must be held while reading
limits from a process to keep the limit structure from changing out from
under you while reading from it.
- Various global limits that are ints are not protected by a lock since
int writes are atomic on all the archs we support and thus a lock
wouldn't buy us anything.
- All accesses to individual resource limits from a process are abstracted
behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return
either an rlimit, or the current or max individual limit of the specified
resource from a process.
- dosetrlimit() was renamed to kern_setrlimit() to match existing style of
other similar syscall helper functions.
- The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit()
(it didn't used the stackgap when it should have) but uses lim_rlimit()
and kern_setrlimit() instead.
- The svr4 compat no longer uses the stackgap for resource limits calls,
but uses lim_rlimit() and kern_setrlimit() instead.
- The ibcs2 compat no longer uses the stackgap for resource limits. It
also no longer uses the stackgap for accessing sysctl's for the
ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result,
ibcs2_sysconf() no longer needs Giant.
- The p_rlimit macro no longer exists.
Submitted by: mtm (mostly, I only did a few cleanups and catchups)
Tested on: i386
Compiled on: alpha, amd64
in OpenBSD by Niels Provos. The patch introduces a bitmap of allocated
file descriptors which is used to locate available descriptors when a new
one is needed. It also moves the task of growing the file descriptor table
out of fdalloc(), reducing complexity in both fdalloc() and do_dup().
Debts of gratitude are owed to tjr@ (who provided the original patch on
which this work is based), grog@ (for the gdb(4) man page) and rwatson@
(for assistance with pxeboot(8)).
fd_cmask field in the file descriptor structure for the first process
indirectly from CMASK, and when an fd structure is initialized before
being filled in, and instead just use CMASK. This appears to be an
artifact left over from the initial integration of quotas into BSD.
Suggested by: peter
systems where the data/stack/etc limits are too big for a 32 bit process.
Move the 5 or so identical instances of ELF_RTLD_ADDR() into imgact_elf.c.
Supply an ia32_fixlimits function. Export the clip/default values to
sysctl under the compat.ia32 heirarchy.
Have mmap(0, ...) respect the current p->p_limits[RLIMIT_DATA].rlim_max
value rather than the sysctl tweakable variable. This allows mmap to
place mappings at sensible locations when limits have been reduced.
Have the imgact_elf.c ld-elf.so.1 placement algorithm use the same
method as mmap(0, ...) now does.
Note that we cannot remove all references to the sysctl tweakable
maxdsiz etc variables because /etc/login.conf specifies a datasize
of 'unlimited'. And that causes exec etc to fail since it can no
longer find space to mmap things.
- Move struct sigacts out of the u-area and malloc() it using the
M_SUBPROC malloc bucket.
- Add a small sigacts_*() API for managing sigacts structures: sigacts_alloc(),
sigacts_free(), sigacts_copy(), sigacts_share(), and sigacts_shared().
- Remove the p_sigignore, p_sigacts, and p_sigcatch macros.
- Add a mutex to struct sigacts that protects all the members of the struct.
- Add sigacts locking.
- Remove Giant from nosys(), kill(), killpg(), and kern_sigaction() now
that sigacts is locked.
- Several in-kernel functions such as psignal(), tdsignal(), trapsignal(),
and thread_stopped() are now MP safe.
Reviewed by: arch@
Approved by: re (rwatson)
uptime. Where necessary, convert it back to Unix time by adding boottime
to it. This fixes a potential problem in the accounting code, which would
compute the elapsed time incorrectly if the Unix time was stepped during
the lifetime of the process.
sched_lock around accesses to p_stats->p_timer[] to avoid a potential
race with hardclock. getitimer(), setitimer() and the realitexpire()
callout are now Giant-free.
I'm not convinced there is anything major wrong with the patch but
them's the rules..
I am using my "David's mentor" hat to revert this as he's
offline for a while.
data structure called kse_upcall to manage UPCALL. All KSE binding
and loaning code are gone.
A thread owns an upcall can collect all completed syscall contexts in
its ksegrp, turn itself into UPCALL mode, and takes those contexts back
to userland. Any thread without upcall structure has to export their
contexts and exit at user boundary.
Any thread running in user mode owns an upcall structure, when it enters
kernel, if the kse mailbox's current thread pointer is not NULL, then
when the thread is blocked in kernel, a new UPCALL thread is created and
the upcall structure is transfered to the new UPCALL thread. if the kse
mailbox's current thread pointer is NULL, then when a thread is blocked
in kernel, no UPCALL thread will be created.
Each upcall always has an owner thread. Userland can remove an upcall by
calling kse_exit, when all upcalls in ksegrp are removed, the group is
atomatically shutdown. An upcall owner thread also exits when process is
in exiting state. when an owner thread exits, the upcall it owns is also
removed.
KSE is a pure scheduler entity. it represents a virtual cpu. when a thread
is running, it always has a KSE associated with it. scheduler is free to
assign a KSE to thread according thread priority, if thread priority is changed,
KSE can be moved from one thread to another.
When a ksegrp is created, there is always N KSEs created in the group. the
N is the number of physical cpu in the current system. This makes it is
possible that even an userland UTS is single CPU safe, threads in kernel still
can execute on different cpu in parallel. Userland calls kse_create to add more
upcall structures into ksegrp to increase concurrent in userland itself, kernel
is not restricted by number of upcalls userland provides.
The code hasn't been tested under SMP by author due to lack of hardware.
Reviewed by: julian
was used to control code which were conditional on DEVFS' precense
since this avoided the need for large-scale source pollution with
#include "opt_geom.h"
Now that we approach making DEVFS standard, replace these tests
with an #ifdef to facilitate mechanical removal once DEVFS becomes
non-optional.
No functional change by this commit.
included in the kernel. Include imgact_elf.c in conf/files, instead of
both imgact_elf32.c and imgact_elf64.c, which will use the default word
size for an architecture as defined in machine/elf.h. Architectures that
wish to build an additional image activator for an alternate word size can
include either imgact_elf32.c or imgact_elf64.c in files.${ARCH}, which
allows it to be dependent on MD options instead of solely on architecture.
Glanced at by: peter
(show thread {address})
Remove the IDLE kse state and replace it with a change in
the way threads sahre KSEs. Every KSE now has a thread, which is
considered its "owner" however a KSE may also be lent to other
threads in the same group to allow completion of in-kernel work.
n this case the owner remains the same and the KSE will revert to the
owner when the other work has been completed.
All creations of upcalls etc. is now done from
kse_reassign() which in turn is called from mi_switch or
thread_exit(). This means that special code can be removed from
msleep() and cv_wait().
kse_release() does not leave a KSE with no thread any more but
converts the existing thread into teh KSE's owner, and sets it up
for doing an upcall. It is just inhibitted from being scheduled until
there is some reason to do an upcall.
Remove all trace of the kse_idle queue since it is no-longer needed.
"Idle" KSEs are now on the loanable queue.
data in the scheduler independant structures (proc, ksegrp, kse, thread).
- Implement unused stubs for this mechanism in sched_4bsd.
Approved by: re
Reviewed by: luigi, trb
Tested on: x86, alpha
sched_lock. This means that we no longer access p_limit in mi_switch()
and the p_limit pointer can be protected by the proc lock.
- Remove PRS_ZOMBIE check from CPU limit test in mi_switch(). PRS_ZOMBIE
processes don't call mi_switch(), and even if they did there is no longer
the danger of p_limit being NULL (which is what the original zombie check
was added for).
- When we bump the current processes soft CPU limit in ast(), just bump the
private p_cpulimit instead of the shared rlimit. This fixes an XXX for
some value of fix. There is still a (probably benign) bug in that this
code doesn't check that the new soft limit exceeds the hard limit.
Inspired by: bde (2)
in specific situations. The owner thread must be blocked, and the
borrower can not proceed back to user space with the borrowed KSE.
The borrower will return the KSE on the next context switch where
teh owner wants it back. This removes a lot of possible
race conditions and deadlocks. It is consceivable that the
borrower should inherit the priority of the owner too.
that's another discussion and would be simple to do.
Also, as part of this, the "preallocatd spare thread" is attached to the
thread doing a syscall rather than the KSE. This removes the need to lock
the scheduler when we want to access it, as it's now "at hand".
DDB now shows a lot mor info for threaded proceses though it may need
some optimisation to squeeze it all back into 80 chars again.
(possible JKH project)
Upcalls are now "bound" threads, but "KSE Lending" now means that
other completing syscalls can be completed using that KSE before the upcall
finally makes it back to the UTS. (getting threads OUT OF THE KERNEL is
one of the highest priorities in the KSE system.) The upcall when it happens
will present all the completed syscalls to the KSE for selection.
doesn't give them enough stack to do much before blowing away the pcb.
This adds MI and MD code to allow the allocation of an alternate kstack
who's size can be speficied when calling kthread_create. Passing the
value 0 prevents the alternate kstack from being created. Note that the
ia64 MD code is missing for now, and PowerPC was only partially written
due to the pmap.c being incomplete there.
Though this patch does not modify anything to make use of the alternate
kstack, acpi and usb are good candidates.
Reviewed by: jake, peter, jhb
gets signals operating based on a TailQ, and is good enough to run X11,
GNOME, and do job control. There are some intricate parts which could be
more refined to match the sigset_t versions, but those require further
evaluation of directions in which our signal system can expand and contract
to fit our needs.
After this has been in the tree for a while, I will make in kernel API
changes, most notably to trapsignal(9) and sendsig(9), to use ksiginfo
more robustly, such that we can actually pass information with our
(queued) signals to the userland. That will also result in using a
struct ksiginfo pointer, rather than a signal number, in a lot of
kern_sig.c, to refer to an individual pending signal queue member, but
right now there is no defined behaviour for such.
CODAFS is unfinished in this regard because the logic is unclear in
some places.
Sponsored by: New Gold Technology
Reviewed by: bde, tjr, jake [an older version, logic similar]
constants VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS, USRSTACK and PS_STRINGS.
This is mainly so that they can be variable even for the native abi, based
on different machine types. Get stack protections from the sysentvec too.
This makes it trivial to map the stack non-executable for certain abis, on
machines that support it.
next step is to allow > 1 to be allocated per process. This would give
multi-processor threads. (when the rest of the infrastructure is
in place)
While doing this I noticed libkvm and sys/kern/kern_proc.c:fill_kinfo_proc
are diverging more than they should.. corrective action needed soon.
sysentvec. Initialized all fields of all sysentvecs, which will allow
them to be used instead of constants in more places. Provided stack
fixup routines for emulations that previously used the default.
a kernel-internal kern_*() version and a wrapper that is called via
the syscall vector table. For paths and structure pointers, the
internal version either takes a uio_seg parameter or requires the
caller to copyin() the data to kernel memory as appropiate. This
will permit emulation layers to use these syscalls without having
to copy out translated arguments to the stack gap.
Discussed on: -arch
Review/suggestions: bde, jhb, peter, marcel
the initproc credential from the proc0 credential. Otherwise, the
proc0 credential is used instead of initproc's credentil when authorizing
start_init() activities prior to initproc hitting userland for the
first time. This could result in the incorrect credential being used
to authorize mounting of the root file system, which could in turn cause
problems for NFS when used in combination with uid/gid ipfw rules, or
with MAC.
Discussed with: julian
kernel access control.
Invoke the necessary MAC entry points to maintain labels on
mount structures. In particular, invoke entry points for
intialization and destruction in various scenarios (root,
non-root). Also introduce an entry point in the boot procedure
following the mount of the root file system, but prior to the
start of the userland init process to permit policies to
perform further initialization.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the necessary MAC entry points to maintain labels on
process credentials. In particular, invoke entry points for
the initialization and destruction of struct ucred, the copying
of struct ucred, and permit the initial labels to be set for
both process 0 (parent of all kernel processes) and process 1
(parent of all user processes).
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
handler in the kernel at the same time. Also, allow for the
exec_new_vmspace() code to build a different sized vmspace depending on
the executable environment. This is a big help for execing i386 binaries
on ia64. The ELF exec code grows the ability to map partial pages when
there is a page size difference, eg: emulating 4K pages on 8K or 16K
hardware pages.
Flesh out the i386 emulation support for ia64. At this point, the only
binary that I know of that fails is cvsup, because the cvsup runtime
tries to execute code in pages not marked executable.
Obtained from: dfr (mostly, many tweaks from me).
formulated. The correct states should be:
IDLE: On the idle KSE list for that KSEG
RUNQ: Linked onto the system run queue.
THREAD: Attached to a thread and slaved to whatever state the thread is in.
This means that most places where we were adjusting kse state can go away
as it is just moving around because the thread is..
The only places we need to adjust the KSE state is in transition to and from
the idle and run queues.
Reviewed by: jhb@freebsd.org
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)
Reviewed by: Almost everyone who counts
(at various times, peter, jhb, matt, alfred, mini, bernd,
and a cast of thousands)
NOTE: this is still Beta code, and contains lots of debugging stuff.
expect slight instability in signals..
needed in the current code, in the MAC tree, create_init() relies on the
ability to modify the credentials present for initproc, and should not
perform that modification on a shared credential. Pro-active diff
reduction against MAC changes that are in the queue; also facilitates
other work, including the capabilities implementation.
Submitted by: green
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
environment needed at boot time to a dynamic subsystem when VM is
up. The dynamic kernel environment is protected by an sx lock.
This adds some new functions to manipulate the kernel environment :
freeenv(), setenv(), unsetenv() and testenv(). freeenv() has to be
called after every getenv() when you have finished using the string.
testenv() only tests if an environment variable is present, and
doesn't require a freeenv() call. setenv() and unsetenv() are self
explanatory.
The kenv(2) syscall exports these new functionalities to userland,
mainly for kenv(1).
Reviewed by: peter
most cases NULL is passed, but in some cases such as network driver locks
(which use the MTX_NETWORK_LOCK macro) and UMA zone locks, a name is used.
Tested on: i386, alpha, sparc64
with this flag. Remove the dup_list and dup_ok code from subr_witness. Now
we just check for the flag instead of doing string compares.
Also, switch the process lock, process group lock, and uma per cpu locks over
to this interface. The original mechanism did not work well for uma because
per cpu lock names are unique to each zone.
Approved by: jhb
New locks are:
- pgrpsess_lock which locks the whole pgrps and sessions,
- pg_mtx which protects the pgrp members, and
- s_mtx which protects the session members.
Please refer to sys/proc.h for the coverage of these locks.
Changes on the pgrp/session interface:
- pgfind() needs the pgrpsess_lock held.
- The caller of enterpgrp() is responsible to allocate a new pgrp and
session.
- Call enterthispgrp() in order to enter an existing pgrp.
- pgsignal() requires a pgrp lock held.
Reviewed by: jhb, alfred
Tested on: cvsup.jp.FreeBSD.org
(which is a quad-CPU machine running -current)
this is a low-functionality change that changes the kernel to access the main
thread of a process via the linked list of threads rather than
assuming that it is embedded in the process. It IS still embeded there
but remove all teh code that assumes that in preparation for the next commit
which will actually move it out.
Reviewed by: peter@freebsd.org, gallatin@cs.duke.edu, benno rice,
Seigo Tanimura (tanimura) posted the initial delta.
I've polished it quite a bit reducing the need for locking and
adapting it for KSE.
Locks:
1 mutex in each filedesc
protects all the fields.
protects "struct file" initialization, while a struct file
is being changed from &badfileops -> &pipeops or something
the filedesc should be locked.
1 mutex in each struct file
protects the refcount fields.
doesn't protect anything else.
the flags used for garbage collection have been moved to
f_gcflag which was the FILLER short, this doesn't need
locking because the garbage collection is a single threaded
container.
could likely be made to use a pool mutex.
1 sx lock for the global filelist.
struct file * fhold(struct file *fp);
/* increments reference count on a file */
struct file * fhold_locked(struct file *fp);
/* like fhold but expects file to locked */
struct file * ffind_hold(struct thread *, int fd);
/* finds the struct file in thread, adds one reference and
returns it unlocked */
struct file * ffind_lock(struct thread *, int fd);
/* ffind_hold, but returns file locked */
I still have to smp-safe the fget cruft, I'll get to that asap.
The description field is unused in -stable, so the MFC there is equivalent
to a comment. It can be done at any time, i am just setting a reminder
in 45 days when hopefully we are past 4.5-release.
MFC after: 45 days
- The MI portions of struct globaldata have been consolidated into a MI
struct pcpu. The MD per-CPU data are specified via a macro defined in
machine/pcpu.h. A macro was chosen over a struct mdpcpu so that the
interface would be cleaner (PCPU_GET(my_md_field) vs.
PCPU_GET(md.md_my_md_field)).
- All references to globaldata are changed to pcpu instead. In a UP kernel,
this data was stored as global variables which is where the original name
came from. In an SMP world this data is per-CPU and ideally private to each
CPU outside of the context of debuggers. This also included combining
machine/globaldata.h and machine/globals.h into machine/pcpu.h.
- The pointer to the thread using the FPU on i386 was renamed from
npxthread to fpcurthread to be identical with other architectures.
- Make the show pcpu ddb command MI with a MD callout to display MD
fields.
- The globaldata_register() function was renamed to pcpu_init() and now
init's MI fields of a struct pcpu in addition to registering it with
the internal array and list.
- A pcpu_destroy() function was added to remove a struct pcpu from the
internal array and list.
Tested on: alpha, i386
Reviewed by: peter, jake
userland. The per thread ucred reference is immutable and thus needs no
locks to be read. However, until all the proc locking associated with
writes to p_ucred are completed, it is still not safe to use the per-thread
reference.
Tested on: x86 (SMP), alpha, sparc64
This works if /dev exists, or if / is read/write (nfsroot). If it is
too hard, leave it up to init -d (which will probably fail if /dev does
not exist, but there isn't much else we can do short of making a union
mount on /).
This means we get a proper /dev if you boot a 5.x kernel on a 4.x world,
which I happen to do often (the ramdisks on our install netboot servers
have 4.x userland worlds on them).
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
(this commit is just the first stage). Also add various GIANT_ macros to
formalize the removal of Giant, making it easy to test in a more piecemeal
fashion. These macros will allow us to test fine-grained locks to a degree
before removing Giant, and also after, and to remove Giant in a piecemeal
fashion via sysctl's on those subsystems which the authors believe can
operate without Giant.
Replace the a.out emulation of 'struct linker_set' with something
a little more flexible. <sys/linker_set.h> now provides macros for
accessing elements and completely hides the implementation.
The linker_set.h macros have been on the back burner in various
forms since 1998 and has ideas and code from Mike Smith (SET_FOREACH()),
John Polstra (ELF clue) and myself (cleaned up API and the conversion
of the rest of the kernel to use it).
The macros declare a strongly typed set. They return elements with the
type that you declare the set with, rather than a generic void *.
For ELF, we use the magic ld symbols (__start_<setname> and
__stop_<setname>). Thanks to Richard Henderson <rth@redhat.com> for the
trick about how to force ld to provide them for kld's.
For a.out, we use the old linker_set struct.
NOTE: the item lists are no longer null terminated. This is why
the code impact is high in certain areas.
The runtime linker has a new method to find the linker set
boundaries depending on which backend format is in use.
linker sets are still module/kld unfriendly and should never be used
for anything that may be modular one day.
Reviewed by: eivind
real uid, saved uid, real gid, and saved gid to ucred, as well as the
pcred->pc_uidinfo, which was associated with the real uid, only rename
it to cr_ruidinfo so as not to conflict with cr_uidinfo, which
corresponds to the effective uid.
o Remove p_cred from struct proc; add p_ucred to struct proc, replacing
original macro that pointed.
p->p_ucred to p->p_cred->pc_ucred.
o Universally update code so that it makes use of ucred instead of pcred,
p->p_ucred instead of p->p_pcred, cr_ruidinfo instead of p_uidinfo,
cr_{r,sv}{u,g}id instead of p_*, etc.
o Remove pcred0 and its initialization from init_main.c; initialize
cr_ruidinfo there.
o Restruction many credential modification chunks to always crdup while
we figure out locking and optimizations; generally speaking, this
means moving to a structure like this:
newcred = crdup(oldcred);
...
p->p_ucred = newcred;
crfree(oldcred);
It's not race-free, but better than nothing. There are also races
in sys_process.c, all inter-process authorization, fork, exec, and
exit.
o Remove sigio->sio_ruid since sigio->sio_ucred now contains the ruid;
remove comments indicating that the old arrangement was a problem.
o Restructure exec1() a little to use newcred/oldcred arrangement, and
use improved uid management primitives.
o Clean up exit1() so as to do less work in credential cleanup due to
pcred removal.
o Clean up fork1() so as to do less work in credential cleanup and
allocation.
o Clean up ktrcanset() to take into account changes, and move to using
suser_xxx() instead of performing a direct uid==0 comparision.
o Improve commenting in various kern_prot.c credential modification
calls to better document current behavior. In a couple of places,
current behavior is a little questionable and we need to check
POSIX.1 to make sure it's "right". More commenting work still
remains to be done.
o Update credential management calls, such as crfree(), to take into
account new ruidinfo reference.
o Modify or add the following uid and gid helper routines:
change_euid()
change_egid()
change_ruid()
change_rgid()
change_svuid()
change_svgid()
In each case, the call now acts on a credential not a process, and as
such no longer requires more complicated process locking/etc. They
now assume the caller will do any necessary allocation of an
exclusive credential reference. Each is commented to document its
reference requirements.
o CANSIGIO() is simplified to require only credentials, not processes
and pcreds.
o Remove lots of (p_pcred==NULL) checks.
o Add an XXX to authorization code in nfs_lock.c, since it's
questionable, and needs to be considered carefully.
o Simplify posix4 authorization code to require only credentials, not
processes and pcreds. Note that this authorization, as well as
CANSIGIO(), needs to be updated to use the p_cansignal() and
p_cansched() centralized authorization routines, as they currently
do not take into account some desirable restrictions that are handled
by the centralized routines, as well as being inconsistent with other
similar authorization instances.
o Update libkvm to take these changes into account.
Obtained from: TrustedBSD Project
Reviewed by: green, bde, jhb, freebsd-arch, freebsd-audit
- Don't bother releasing Giant while doing a lookup on the vm_map of
initproc while starting up init. We have to grab it again right after
the lookup anyways.
vm_mtx does not recurse and is required for most low level
vm operations.
faults can not be taken without holding Giant.
Memory subsystems can now call the base page allocators safely.
Almost all atomic ops were removed as they are covered under the
vm mutex.
Alpha and ia64 now need to catch up to i386's trap handlers.
FFS and NFS have been tested, other filesystems will need minor
changes (grabbing the vm lock when twiddling page properties).
Reviewed (partially) by: jake, jhb
- Attach a writable sysctl to bootverbose (debug.bootverbose) so it can be
toggled after boot.
- Move the printf of the version string to a SI_SUB_COPYRIGHT SYSINIT just
afer the display of the copyright message instead of doing it by hand in
three MD places.