thing it was still used for was to set the "global default" password
hash. Since the stock auth.conf contained nothing but comments, the
global default was actually the first algorithm in crypt(3)'s list,
which happens to be DES; I take the fact that nobody noticed as proof
that it was not used outside of crypt(3).
The only other use in our tree was in the Kerberos support code in
in tinyware's passwd(1). I removed that code in an earlier commit;
it would not have compiled anyway, as it only supported Kerberos IV.
The auth_getval() function is now a stub that always returns NULL,
which has the same effect as a functional auth_getval() with an
empty auth.conf.
MFC after: 3 weeks
Revamp the CAM enclosure services driver.
This updated driver uses an in-kernel daemon to track state changes and
publishes physical path location information\for disk elements into the
CAM device database.
Sponsored by: Spectra Logic Corporation
Sponsored by: iXsystems, Inc.
Submitted by: gibbs, will, mav
- Add an examples file with many of the not accepted suggestions from the discussion
PR: conf/160689
Reviewed by: many
Discussed on: current
Approved by: cperciva
CTL is a disk and processor device emulation subsystem originally written
for Copan Systems under Linux starting in 2003. It has been shipping in
Copan (now SGI) products since 2005.
It was ported to FreeBSD in 2008, and thanks to an agreement between SGI
(who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is
available under a BSD-style license. The intent behind the agreement was
that Spectra would work to get CTL into the FreeBSD tree.
Some CTL features:
- Disk and processor device emulation.
- Tagged queueing
- SCSI task attribute support (ordered, head of queue, simple tags)
- SCSI implicit command ordering support. (e.g. if a read follows a mode
select, the read will be blocked until the mode select completes.)
- Full task management support (abort, LUN reset, target reset, etc.)
- Support for multiple ports
- Support for multiple simultaneous initiators
- Support for multiple simultaneous backing stores
- Persistent reservation support
- Mode sense/select support
- Error injection support
- High Availability support (1)
- All I/O handled in-kernel, no userland context switch overhead.
(1) HA Support is just an API stub, and needs much more to be fully
functional.
ctl.c: The core of CTL. Command handlers and processing,
character driver, and HA support are here.
ctl.h: Basic function declarations and data structures.
ctl_backend.c,
ctl_backend.h: The basic CTL backend API.
ctl_backend_block.c,
ctl_backend_block.h: The block and file backend. This allows for using
a disk or a file as the backing store for a LUN.
Multiple threads are started to do I/O to the
backing device, primarily because the VFS API
requires that to get any concurrency.
ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a
small amount of memory to act as a source and sink
for reads and writes from an initiator. Therefore
it cannot be used for any real data, but it can be
used to test for throughput. It can also be used
to test initiators' support for extremely large LUNs.
ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes,
and command handler functions defined for supported
opcodes.
ctl_debug.h: Debugging support.
ctl_error.c,
ctl_error.h: CTL-specific wrappers around the CAM sense building
functions.
ctl_frontend.c,
ctl_frontend.h: These files define the basic CTL frontend port API.
ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM.
This frontend allows for using CTL without any
target-capable hardware. So any LUNs you create in
CTL are visible in CAM via this port.
ctl_frontend_internal.c,
ctl_frontend_internal.h:
This is a frontend port written for Copan to do
some system-specific tasks that required sending
commands into CTL from inside the kernel. This
isn't entirely relevant to FreeBSD in general,
but can perhaps be repurposed.
ctl_ha.h: This is a stubbed-out High Availability API. Much
more is needed for full HA support. See the
comments in the header and the description of what
is needed in the README.ctl.txt file for more
details.
ctl_io.h: This defines most of the core CTL I/O structures.
union ctl_io is conceptually very similar to CAM's
union ccb.
ctl_ioctl.h: This defines all ioctls available through the CTL
character device, and the data structures needed
for those ioctls.
ctl_mem_pool.c,
ctl_mem_pool.h: Generic memory pool implementation used by the
internal frontend.
ctl_private.h: Private data structres (e.g. CTL softc) and
function prototypes. This also includes the SCSI
vendor and product names used by CTL.
ctl_scsi_all.c,
ctl_scsi_all.h: CTL wrappers around CAM sense printing functions.
ctl_ser_table.c: Command serialization table. This defines what
happens when one type of command is followed by
another type of command.
ctl_util.c,
ctl_util.h: CTL utility functions, primarily designed to be
used from userland. See ctladm for the primary
consumer of these functions. These include CDB
building functions.
scsi_ctl.c: CAM target peripheral driver and CTL frontend port.
This is the path into CTL for commands from
target-capable hardware/SIMs.
README.ctl.txt: CTL code features, roadmap, to-do list.
usr.sbin/Makefile: Add ctladm.
ctladm/Makefile,
ctladm/ctladm.8,
ctladm/ctladm.c,
ctladm/ctladm.h,
ctladm/util.c: ctladm(8) is the CTL management utility.
It fills a role similar to camcontrol(8).
It allow configuring LUNs, issuing commands,
injecting errors and various other control
functions.
usr.bin/Makefile: Add ctlstat.
ctlstat/Makefile
ctlstat/ctlstat.8,
ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8).
It reports I/O statistics for CTL.
sys/conf/files: Add CTL files.
sys/conf/NOTES: Add device ctl.
sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB
length field is now 2 bytes long.
Add several mode page definitions for CTL.
sys/cam/scsi_all.c: Handle the new 2 byte inquiry length.
sys/dev/ciss/ciss.c,
sys/dev/ata/atapi-cam.c,
sys/cam/scsi/scsi_targ_bh.c,
scsi_target/scsi_cmds.c,
mlxcontrol/interface.c: Update for 2 byte inquiry length field.
scsi_da.h: Add versions of the format and rigid disk pages
that are in a more reasonable format for CTL.
amd64/conf/GENERIC,
i386/conf/GENERIC,
ia64/conf/GENERIC,
sparc64/conf/GENERIC: Add device ctl.
i386/conf/PAE: The CTL frontend SIM at least does not compile
cleanly on PAE.
Sponsored by: Copan Systems, SGI and Spectra Logic
MFC after: 1 month
CAM.
Desriptor sense is a new sense data format that originated in SPC-3. Among
other things, it allows for an 8-byte info field, which is necessary to
pass back block numbers larger than 4 bytes.
This change adds a number of new functions to scsi_all.c (and therefore
libcam) that abstract out most access to sense data.
This includes a bump of CAM_VERSION, because the CCB ABI has changed.
Userland programs that use the CAM pass(4) driver will need to be
recompiled.
camcontrol.c: Change uses of scsi_extract_sense() to use
scsi_extract_sense_len().
Use scsi_get_sks() instead of accessing sense key specific
data directly.
scsi_modes: Update the control mode page to the latest version (SPC-4).
scsi_cmds.c,
scsi_target.c: Change references to struct scsi_sense_data to struct
scsi_sense_data_fixed. This should be changed to allow the
user to specify fixed or descriptor sense, and then use
scsi_set_sense_data() to build the sense data.
ps3cdrom.c: Use scsi_set_sense_data() instead of setting sense data
manually.
cam_periph.c: Use scsi_extract_sense_len() instead of using
scsi_extract_sense() or accessing sense data directly.
cam_ccb.h: Bump the CAM_VERSION from 0x15 to 0x16. The change of
struct scsi_sense_data from 32 to 252 bytes changes the
size of struct ccb_scsiio, but not the size of union ccb.
So the version must be bumped to prevent structure
mis-matches.
scsi_all.h: Lots of updated SCSI sense data and other structures.
Add function prototypes for the new sense data functions.
Take out the inline implementation of scsi_extract_sense().
It is now too large to put in a header file.
Add macros to calculate whether fields are present and
filled in fixed and descriptor sense data
scsi_all.c: In scsi_op_desc(), allow the user to pass in NULL inquiry
data, and we'll assume a direct access device in that case.
Changed the SCSI RESERVED sense key name and description
to COMPLETED, as it is now defined in the spec.
Change the error recovery action for a number of read errors
to prevent lots of retries when the drive has said that the
block isn't accessible. This speeds up reconstruction of
the block by any RAID software running on top of the drive
(e.g. ZFS).
In scsi_sense_desc(), allow for invalid sense key numbers.
This allows calling this routine without checking the input
values first.
Change scsi_error_action() to use scsi_extract_sense_len(),
and handle things when invalid asc/ascq values are
encountered.
Add a new routine, scsi_desc_iterate(), that will call the
supplied function for every descriptor in descriptor format
sense data.
Add scsi_set_sense_data(), and scsi_set_sense_data_va(),
which build descriptor and fixed format sense data. They
currently default to fixed format sense data.
Add a number of scsi_get_*() functions, which get different
types of sense data fields from either fixed or descriptor
format sense data, if the data is present.
Add a number of scsi_*_sbuf() functions, which print
formatted versions of various sense data fields. These
functions work for either fixed or descriptor sense.
Add a number of scsi_sense_*_sbuf() functions, which have a
standard calling interface and print the indicated field.
These functions take descriptors only.
Add scsi_sense_desc_sbuf(), which will print a formatted
version of the given sense descriptor.
Pull out a majority of the scsi_sense_sbuf() function and
put it into scsi_sense_only_sbuf(). This allows callers
that don't use struct ccb_scsiio to easily utilize the
printing routines. Revamp that function to handle
descriptor sense and use the new sense fetching and
printing routines.
Move scsi_extract_sense() into scsi_all.c, and implement it
in terms of the new function, scsi_extract_sense_len().
The _len() version takes a length (which should be the
sense length - residual) and can indicate which fields are
present and valid in the sense data.
Add a couple of new scsi_get_*() routines to get the sense
key, asc, and ascq only.
mly.c: Rename struct scsi_sense_data to struct
scsi_sense_data_fixed.
sbp_targ.c: Use the new sense fetching routines to get sense data
instead of accessing it directly.
sbp.c: Change the firewire/SCSI sense data transformation code to
use struct scsi_sense_data_fixed instead of struct
scsi_sense_data. This should be changed later to use
scsi_set_sense_data().
ciss.c: Calculate the sense residual properly. Use
scsi_get_sense_key() to fetch the sense key.
mps_sas.c,
mpt_cam.c: Set the sense residual properly.
iir.c: Use scsi_set_sense_data() instead of building sense data by
hand.
iscsi_subr.c: Use scsi_extract_sense_len() instead of grabbing sense data
directly.
umass.c: Use scsi_set_sense_data() to build sense data.
Grab the sense key using scsi_get_sense_key().
Calculate the sense residual properly.
isp_freebsd.h: Use scsi_get_*() routines to grab asc, ascq, and sense key
values.
Calculate and set the sense residual.
MFC after: 3 days
Sponsored by: Spectra Logic Corporation
doc/, and now www/ trees, but only using the "cvsup" transport.
When "make update" is run using a tree's makefile, it can also use
"cvs" (except for www/) and "svn" (only src/).
Clean up documentation and code regarding "make update":
- Increase oddness by adding support for WWWSUPFILE and NO_WWWUPDATE to
Makefile.inc1 (analogous to PORTSSUPFILE/NO_PORTSUPDATE and
DOCSUPFILE/NO_DOCUPDATE; WWWSUPFILE already supported by www/Makefile).
- Document all trees that support CVS_UPDATE.
- Document all trees that support SUP_UPDATE.
- Document SVN_UPDATE.
- Document NO_WWWUPDATE.
- make.conf(5) mistakenly said that *SUPFILE* had defaults.
- Add an example entry for WWWSUPFILE.
- add "sse3" to MACHINE_CPU for the new cpu types
- for i386, default to CPUTYPE=prescott for the new cpu types
PR: gnu/154906
Discussed with: kib, kan, dim
MFC after: 2 weeks
to let the compiler optimize for the famility of UltraSPARC-III CPUs as the
default already was to optimize for UltraSPARC-I/II and generating generic
64-bit V9 is mainly for reference purposes. At least for SPARC64-V CPUs
code optimized for UltraSPARC-I/II still is the most performant one.
Thanks go to Michael Moll for testing SPARC64-V.
- Move a booke MACHINE_CPU bit into the right section.
make(1) or /usr/ports/ports-mgmt/portconf for port-specific
variables/options to compile a port.
PR: docs/145655
Submitted by: Armin Pirkovitsch (armin at frozen dash zone dot org)
Discussed with: dougb
MFC after: 7 days