A nested exception condition arises when a second exception is triggered while
delivering the first exception. Most nested exceptions can be handled serially
but some are converted into a double fault. If an exception is generated during
delivery of a double fault then the virtual machine shuts down as a result of
a triple fault.
vm_exit_intinfo() is used to record that a VM-exit happened while an event was
being delivered through the IDT. If an exception is triggered while handling
the VM-exit it will be treated like a nested exception.
vm_entry_intinfo() is used by processor-specific code to get the event to be
injected into the guest on the next VM-entry. This function is responsible for
deciding the disposition of nested exceptions.
it implicitly in vmm.ko.
Add ioctl VM_GET_CPUS to get the current set of 'active' and 'suspended' cpus
and display them via /usr/sbin/bhyvectl using the "--get-active-cpus" and
"--get-suspended-cpus" options.
This is in preparation for being able to reset virtual machine state without
having to destroy and recreate it.
of the guest linear address space. These APIs in turn use a new ioctl
'VM_GLA2GPA' to convert the guest linear address to guest physical.
Use the new copyin/copyout APIs when emulating ins/outs instruction in
bhyve(8).
the legacy 8259A PICs.
- Implement an ICH-comptabile PCI interrupt router on the lpc device with
8 steerable pins configured via config space access to byte-wide
registers at 0x60-63 and 0x68-6b.
- For each configured PCI INTx interrupt, route it to both an I/O APIC
pin and a PCI interrupt router pin. When a PCI INTx interrupt is
asserted, ensure that both pins are asserted.
- Provide an initial routing of PCI interrupt router (PIRQ) pins to
8259A pins (ISA IRQs) and initialize the interrupt line config register
for the corresponding PCI function with the ISA IRQ as this matches
existing hardware.
- Add a global _PIC method for OSPM to select the desired interrupt routing
configuration.
- Update the _PRT methods for PCI bridges to provide both APIC and legacy
PRT tables and return the appropriate table based on the configured
routing configuration. Note that if the lpc device is not configured, no
routing information is provided.
- When the lpc device is enabled, provide ACPI PCI link devices corresponding
to each PIRQ pin.
- Add a VMM ioctl to adjust the trigger mode (edge vs level) for 8259A
pins via the ELCR.
- Mark the power management SCI as level triggered.
- Don't hardcode the number of elements in Packages in the source for
the DSDT. iasl(8) will fill in the actual number of elements, and
this makes it simpler to generate a Package with a variable number of
elements.
Reviewed by: tycho
by adding an argument to the VM_SUSPEND ioctl that specifies how the virtual
machine should be suspended, viz. VM_SUSPEND_RESET or VM_SUSPEND_POWEROFF.
The disposition of VM_SUSPEND is also made available to the exit handler
via the 'u.suspended' member of 'struct vm_exit'.
This capability is exposed via the '--force-reset' and '--force-poweroff'
arguments to /usr/sbin/bhyvectl.
Discussed with: grehan@
- remove redundant code
- remove erroneous setting of the error return
in vmmdev_ioctl()
- use style(9) initialization
- in vmx_inject_pir(), document the race condition
that the final conditional statement was detecting,
Tested with both gcc and clang builds.
Reviewed by: neel
correct for the pirbase test (since I'd have thought we'd need to do
something even when the offset is 0 and that test looks like a
misguided attempt to not use an uninitialized variable), but it is at
least the same as today.
from any context i.e., it is not required to be called from a vcpu thread. The
ioctl simply sets a state variable 'vm->suspend' to '1' and returns.
The vcpus inspect 'vm->suspend' in the run loop and if it is set to '1' the
vcpu breaks out of the loop with a reason of 'VM_EXITCODE_SUSPENDED'. The
suspend handler waits until all 'vm->active_cpus' have transitioned to
'vm->suspended_cpus' before returning to userspace.
Discussed with: grehan
New ioctls VM_ISA_ASSERT_IRQ, VM_ISA_DEASSERT_IRQ and VM_ISA_PULSE_IRQ
can be used to manipulate the pic, and optionally the ioapic, pin state.
Reviewed by: jhb, neel
Approved by: neel (co-mentor)
processor-specific VMCS or VMCB. The pending exception will be delivered right
before entering the guest.
The order of event injection into the guest is:
- hardware exception
- NMI
- maskable interrupt
In the Intel VT-x case, a pending NMI or interrupt will enable the interrupt
window-exiting and inject it as soon as possible after the hardware exception
is injected. Also since interrupts are inherently asynchronous, injecting
them after the hardware exception should not affect correctness from the
guest perspective.
Rename the unused ioctl VM_INJECT_EVENT to VM_INJECT_EXCEPTION and restrict
it to only deliver x86 hardware exceptions. This new ioctl is now used to
inject a protection fault when the guest accesses an unimplemented MSR.
Discussed with: grehan, jhb
Reviewed by: jhb
the virtio backends.
- Add a new ioctl to export the count of pins on the I/O APIC from vmm
to the hypervisor.
- Use pins on the I/O APIC >= 16 for PCI interrupts leaving 0-15 for
ISA interrupts.
- Populate the MP Table with I/O interrupt entries for any PCI INTx
interrupts.
- Create a _PRT table under the PCI root bridge in ACPI to route any
PCI INTx interrupts appropriately.
- Track which INTx interrupts are in use per-slot so that functions
that share a slot attempt to distribute their INTx interrupts across
the four available pins.
- Implicitly mask INTx interrupts if either MSI or MSI-X is enabled
and when the INTx DIS bit is set in a function's PCI command register.
Either assert or deassert the associated I/O APIC pin when the
state of one of those conditions changes.
- Add INTx support to the virtio backends.
- Always advertise the MSI capability in the virtio backends.
Submitted by: neel (7)
Reviewed by: neel
MFC after: 2 weeks
- Add a generic routine to trigger an LVT interrupt that supports both
fixed and NMI delivery modes.
- Add an ioctl and bhyvectl command to trigger local interrupts inside a
guest. In particular, a global NMI similar to that raised by SERR# or
PERR# can be simulated by asserting LINT1 on all vCPUs.
- Extend the LVT table in the vCPU local APIC to support CMCI.
- Flesh out the local APIC error reporting a bit to cache errors and
report them via ESR when ESR is written to. Add support for asserting
the error LVT when an error occurs. Raise illegal vector errors when
attempting to signal an invalid vector for an interrupt or when sending
an IPI.
- Ignore writes to reserved bits in LVT entries.
- Export table entries the MADT and MP Table advertising the stock x86
config of LINT0 set to ExtInt and LINT1 wired to NMI.
Reviewed by: neel (earlier version)
state before the requested state transition. This guarantees that there is
exactly one ioctl() operating on a vcpu at any point in time and prevents
unintended state transitions.
More details available here:
http://lists.freebsd.org/pipermail/freebsd-virtualization/2013-December/001825.html
Reviewed by: grehan
Reported by: Markiyan Kushnir (markiyan.kushnir at gmail.com)
MFC after: 3 days
callers treat the MSI 'addr' and 'data' fields as opaque and also lets
bhyve implement multiple destination modes: physical, flat and clustered.
Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
Reviewed by: grehan@
commit level triggered interrupts would work as long as the pin was not shared
among multiple interrupt sources.
The vlapic now keeps track of level triggered interrupts in the trigger mode
register and will forward the EOI for a level triggered interrupt to the
vioapic. The vioapic in turn uses the EOI to sample the level on the pin and
re-inject the vector if the pin is still asserted.
The vhpet is the first consumer of level triggered interrupts and advertises
that it can generate interrupts on pins 20 through 23 of the vioapic.
Discussed with: grehan@
bhyve supports a single timer block with 8 timers. The timers are all 32-bit
and capable of being operated in periodic mode. All timers support interrupt
delivery using MSI. Timers 0 and 1 also support legacy interrupt routing.
At the moment the timers are not connected to any ioapic pins but that will
be addressed in a subsequent commit.
This change is based on a patch from Tycho Nightingale (tycho.nightingale@pluribusnetworks.com).
to inject edge triggered legacy interrupts into the guest.
Start using the new API in device models that use edge triggered interrupts:
viz. the 8254 timer and the LPC/uart device emulation.
Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
upcoming in-kernel device emulations like the HPET.
The ioctls VM_IOAPIC_ASSERT_IRQ and VM_IOAPIC_DEASSERT_IRQ are used to
manipulate the ioapic pin state.
Discussed with: grehan@
Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
the 'vmmdev_mtx' in vmmdev_rw().
Rely on the 'si_threadcount' accounting to ensure that we never destroy the
VM device node while it has operations in progress (e.g. ioctl, mmap etc).
Reported by: grehan
Reviewed by: grehan
Make the amd64/pmap code aware of nested page table mappings used by bhyve
guests. This allows bhyve to associate each guest with its own vmspace and
deal with nested page faults in the context of that vmspace. This also
enables features like accessed/dirty bit tracking, swapping to disk and
transparent superpage promotions of guest memory.
Guest vmspace:
Each bhyve guest has a unique vmspace to represent the physical memory
allocated to the guest. Each memory segment allocated by the guest is
mapped into the guest's address space via the 'vmspace->vm_map' and is
backed by an object of type OBJT_DEFAULT.
pmap types:
The amd64/pmap now understands two types of pmaps: PT_X86 and PT_EPT.
The PT_X86 pmap type is used by the vmspace associated with the host kernel
as well as user processes executing on the host. The PT_EPT pmap is used by
the vmspace associated with a bhyve guest.
Page Table Entries:
The EPT page table entries as mostly similar in functionality to regular
page table entries although there are some differences in terms of what
bits are used to express that functionality. For e.g. the dirty bit is
represented by bit 9 in the nested PTE as opposed to bit 6 in the regular
x86 PTE. Therefore the bitmask representing the dirty bit is now computed
at runtime based on the type of the pmap. Thus PG_M that was previously a
macro now becomes a local variable that is initialized at runtime using
'pmap_modified_bit(pmap)'.
An additional wrinkle associated with EPT mappings is that older Intel
processors don't have hardware support for tracking accessed/dirty bits in
the PTE. This means that the amd64/pmap code needs to emulate these bits to
provide proper accounting to the VM subsystem. This is achieved by using
the following mapping for EPT entries that need emulation of A/D bits:
Bit Position Interpreted By
PG_V 52 software (accessed bit emulation handler)
PG_RW 53 software (dirty bit emulation handler)
PG_A 0 hardware (aka EPT_PG_RD)
PG_M 1 hardware (aka EPT_PG_WR)
The idea to use the mapping listed above for A/D bit emulation came from
Alan Cox (alc@).
The final difference with respect to x86 PTEs is that some EPT implementations
do not support superpage mappings. This is recorded in the 'pm_flags' field
of the pmap.
TLB invalidation:
The amd64/pmap code has a number of ways to do invalidation of mappings
that may be cached in the TLB: single page, multiple pages in a range or the
entire TLB. All of these funnel into a single EPT invalidation routine called
'pmap_invalidate_ept()'. This routine bumps up the EPT generation number and
sends an IPI to the host cpus that are executing the guest's vcpus. On a
subsequent entry into the guest it will detect that the EPT has changed and
invalidate the mappings from the TLB.
Guest memory access:
Since the guest memory is no longer wired we need to hold the host physical
page that backs the guest physical page before we can access it. The helper
functions 'vm_gpa_hold()/vm_gpa_release()' are available for this purpose.
PCI passthru:
Guest's with PCI passthru devices will wire the entire guest physical address
space. The MMIO BAR associated with the passthru device is backed by a
vm_object of type OBJT_SG. An IOMMU domain is created only for guest's that
have one or more PCI passthru devices attached to them.
Limitations:
There isn't a way to map a guest physical page without execute permissions.
This is because the amd64/pmap code interprets the guest physical mappings as
user mappings since they are numerically below VM_MAXUSER_ADDRESS. Since PG_U
shares the same bit position as EPT_PG_EXECUTE all guest mappings become
automatically executable.
Thanks to Alan Cox and Konstantin Belousov for their rigorous code reviews
as well as their support and encouragement.
Thanks for John Baldwin for reviewing the use of OBJT_SG as the backing
object for pci passthru mmio regions.
Special thanks to Peter Holm for testing the patch on short notice.
Approved by: re
Discussed with: grehan
Reviewed by: alc, kib
Tested by: pho
An array-type stat in vmm.ko is defined as follows:
VMM_STAT_ARRAY(IPIS_SENT, VM_MAXCPU, "ipis sent to vcpu");
It is incremented as follows:
vmm_stat_array_incr(vm, vcpuid, IPIS_SENT, array_index, 1);
And output of 'bhyvectl --get-stats' looks like:
ipis sent to vcpu[0] 3114
ipis sent to vcpu[1] 0
Reviewed by: grehan
Obtained from: NetApp
Prior to this change pinning was implemented via an ioctl (VM_SET_PINNING)
that called 'sched_bind()' on behalf of the user thread.
The ULE implementation of 'sched_bind()' bumps up 'td_pinned' which in turn
runs afoul of the assertion '(td_pinned == 0)' in userret().
Using the cpuset affinity to implement pinning of the vcpu threads works with
both 4BSD and ULE schedulers and has the happy side-effect of getting rid
of a bunch of code in vmm.ko.
Discussed with: grehan
chunks. This breaks the assumption that the entire memory segment is
contiguously allocated in the host physical address space.
This also paves the way to satisfy the 4KB page allocations by requesting
free pages from the VM subsystem as opposed to hard-partitioning host memory
at boot time.
associated with guest physical memory is contiguous.
In this case vm_malloc() was using vm_gpa2hpa() to indirectly infer whether
or not the address range had already been allocated.
Replace this instead with an explicit API 'vm_gpa_available()' that returns
TRUE if a page is available for allocation in guest physical address space.
Includes instruction emulation for memory r/w access. This
opens the door for io-apic, local apic, hpet timer, and
legacy device emulation.
Submitted by: ryan dot berryhill at sandvine dot com
Reviewed by: grehan
Obtained from: Sandvine
vmm.ko - kernel module for VT-x, VT-d and hypervisor control
bhyve - user-space sequencer and i/o emulation
vmmctl - dump of hypervisor register state
libvmm - front-end to vmm.ko chardev interface
bhyve was designed and implemented by Neel Natu.
Thanks to the following folk from NetApp who helped to make this available:
Joe CaraDonna
Peter Snyder
Jeff Heller
Sandeep Mann
Steve Miller
Brian Pawlowski