have a write in progress. Otherwise one can get in an infinite loop
trying to get them all flushed.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
set of restrictions for cancelling an inode dependency (inodedep)
is somewhat stronger than originally coded. Since this check appears
in two places, we codify it into the function check_inode_unwritten
which we then call from the two sites, one freeing blocks and the
other freeing directory entries.
Submitted by: Steinar Haug via Matthew Dillon
so that they never try to lock an inode corresponding to ".." as this
can lead to deadlock. We observe that any inode with an updated link count
is always pushed into its buffer at the time of the link count change, so
we do not need to do a VOP_UPDATE, but merely find its buffer and write it.
The only time we need to get the inode itself is from the result of a
mkdir whose name will never be ".." and hence locking such an inode will
never request a lock above us in the filesystem tree. Thanks to Brian
Fundakowski Feldman for providing the test program that tickled soft updates
into hanging in "inode" sleep.
Submitted by: Brian Fundakowski Feldman <green@FreeBSD.org>
to sleep). Locking 101, part 2: do not look at buffer contents after
you have been asleep. There is no telling what wonderous changes may
have occurred.
This seems to be responsible for a bunch of panics where the process
sleeps and something else finds softupdates "locked" when it shouldn't
be. This commit is unreviewed, but has been a big help here.
Previously my boxes would panic pretty much on the first fsync() that
wrote something to disk.
it is no longer sufficient to get a lock on a buffer to know
that its write has been completed. We have to first get the
lock on the buffer, then check to see if it is doing a
background write. If it is doing background write, we have
to wait for the background write to finish, then check to see
if that fullfilled our dependency, and if not to start another
write. Luckily the explanation is longer than the fix.
a vnode has not been written (which would clear certain of its
dependencies). The problems arises because fsync with MNT_NOWAIT
no longer pushes all the dirty blocks associated with a vnode. It
skips those that require rollbacks, since they will just get instantly
dirty again. Such skipped blocks are marked so that they will not be
skipped a second time (otherwise circular dependencies would never
clear). So, we fsync twice to ensure that everything will be written
at least once.
have been cleaned up by deallocte_dependencies(). Once that is done, it
is safe to post the request to free the blocks. A similar change is also
needed for the freefile case.
1) Fastpath deletions. When a file is being deleted, check to see if it
was so recently created that its inode has not yet been written to
disk. If so, the delete can proceed to immediately free the inode.
2) Background writes: No file or block allocations can be done while the
bitmap is being written to disk. To avoid these stalls, the bitmap is
copied to another buffer which is written thus leaving the original
available for futher allocations.
3) Link count tracking. Constantly track the difference in i_effnlink and
i_nlink so that inodes that have had no change other than i_effnlink
need not be written.
4) Identify buffers with rollback dependencies so that the buffer flushing
daemon can choose to skip over them.
of dirrem structure rather than the collaterally created freeblks
and freefile structures. Limit the rate of buffer dirtying by the
syncer process during periods of intense file removal.
check before the inode is unlocked while grabbing its parent directory.
Once it is unlocked, other operations may slip in that could make
the inode-is-flushed check fail. Allowing other writes to the inode
before returning from fsync does not break the semantics of fsync
since we have flushed everything that was dirty at the time of the
fsync call.
quite dangerous, since the process may hold locks at the point,
and if it is stopped in that tsleep the machine may hang. Because
the sleep is so short, the PCATCH is not required here, so it has
been removed. For the future, the FreeBSD team needs to decide
whether it is still reasonable to stop a process in tsleep, as that
may affect any other code that uses PCATCH while holding kernel locks.
Submitted by: Dmitrij Tejblum <tejblum@arc.hq.cti.ru>
Reviewed by: Kirk McKusick <mckusick@mckusick.com>
* lockstatus() and VOP_ISLOCKED() gets a new process argument and a new
return value: LK_EXCLOTHER, when the lock is held exclusively by another
process.
* The ASSERT_VOP_(UN)LOCKED family is extended to use what this gives them
* Extend the vnode_if.src format to allow more exact specification than
locked/unlocked.
This commit should not do any semantic changes unless you are using
DEBUG_VFS_LOCKS.
Discussed with: grog, mch, peter, phk
Reviewed by: peter
lockmgr locks. This commit should be functionally equivalent to the old
semantics. That is, all buffer locking is done with LK_EXCLUSIVE
requests. Changes to take advantage of LK_SHARED and LK_RECURSIVE will
be done in future commits.
a sync on the block device for the filesystem. That allows it to push the
bitmap blocks before the inode blocks which greatly reduces the number of
inode rollbacks that need to be done.
files at once on a filesystem running soft updates. The root of
the problem is that soft updates limits the amount of memory that
may be allocated to dependency structures so as to avoid hogging
kernel memory. The original algorithm just waited for the disk I/O
to catch up and reduce the number of dependencies. This new code
takes a much more aggressive approach. Basically there are two
resources that routinely hit the limit. Inode dependencies during
periods with a high file creation rate and file and block removal
dependencies during periods with a high file removal rate. I have
attacked these problems from two fronts. When the inode dependency
limits are reached, I pick a random inode dependency, UFS_UPDATE
it together with all the other dirty inodes contained within its
disk block and then write that disk block. This trick usually
clears 5-50 inode dependencies in a single disk I/O. For block and
file removal dependencies, I pick a random directory page that has
at least one remove pending and VOP_FSYNC its directory. That
releases all its removal dependencies to the work queue. To further
hasten things along, I also immediately start the work queue process
rather than waiting for its next one second scheduled run.
turns out to not be useful to unwind the dependencies and continue in
the face of a fatal error.
Also changed the log() to a printf() in softdep_error() so that it will
be output in the case of a impending panic.
Submitted by: Kirk McKusick <mckusick@mckusick.com>
MNT_WAIT when we mean boolean `true' or check for that value not being
passed. There was no problem in practice because MNT_WAIT had the
magic value of 1.
The problem is caused when a directory block is compacted. When this
occurs, softdep_change_directoryentry_offset() is called to relocate each
directory entry and adjust its matching diradd structure, if any, to match
the new location of the entry. The bug is that while
softdep_change_directoryentry_offset() correctly adjusts the offsets of
the diradd structures on the pd_diraddhd[] lists (which are not yet ready
to be committed to disk), it fails to adjust the offsets of the diradd
structures on the pd_pendinghd list (which are ready to be committed to
disk). This causes the dependency structures to be inconsistent with
the buf contents. Now, if the compaction has moved a directory entry to
the same offset as one of the diradd structures on the pd_pendinghd list
*and* a syscall is done that tries to remove this directory entry before
this directory block has been written to disk (which would empty
pd_pendinghd), a sanity check in newdirrem() will call panic() when it
notices that the inode number in the entry that it is to be removed doesn't
match the inode number in the diradd structure with that offset of that
entry.
Reviewed by: Kirk McKusick <mckusick@McKusick.COM>
Submitted by: Don Lewis <Don.Lewis@tsc.tdk.com>
Submitted by: Kirk McKusick <mckusick@McKusick.COM>
Two minor changes are also included,
1. Remove gratuitious checks for error return from vn_lock with LK_RETRY set,
vn_lock should always succeed in these cases.
2. Back out change rev. 1.36->1.37, which unnecessarily makes async mount
a little more unstable. It also keeps us in sync with other BSDs.
Suggested by: Bruce Evans <bde@zeta.org.au>
that had an inode that has not yet been written to disk, when the inode of the
new file is also not yet written to disk, and your old directory entry is not
yet on disk but you need to remove it and the new name exists in memory
but has been deleted but the transaction to write the deleted name to disk
exists and has not yet been cancelled by the request to delete the non
existant name. I don't know how kirk could have missed such a glaring
problem for so long. :-) Especially since the inconsitency survived on
the disk for a whole 4 second on average before being fixed by other code.
This was not a crashing bug but just led to filesystem inconsitencies
if you crashed.
Submitted by: Kirk McKusick (mckusick@mckusick.com)