164 Commits

Author SHA1 Message Date
Jeff Roberson
a6ed41865b - In sched_add() special case PRI_TIMESHARE and PRI_ITHD|PRI_REALTIME. We
always place ITHD & REALTIME threads on the current queue of the current
   cpu.  Prior to this change an interrupt thread would only ever run on one
   cpu.
2003-03-03 04:28:07 +00:00
Jeff Roberson
f1e8dc4a3b - Refrain from setting the td_priority in sched_wakeup(). It will be reset
before we return to user space.
2003-03-03 04:11:40 +00:00
Julian Elischer
ac2e415327 Change the process flags P_KSES to be P_THREADED.
This is just a cosmetic change but I've been meaning to do it for about a year.
2003-02-27 02:05:19 +00:00
Julian Elischer
4a338afd7a Move a bunch of flags from the KSE to the thread.
I was in two minds as to where to put them in the first case..
I should have listenned to the other mind.

Submitted by:	 parts by davidxu@
Reviewed by:	jeff@ mini@
2003-02-17 09:55:10 +00:00
Jeff Roberson
783caefbbf - Enable STRICT_RESCHED until code that dynamically decides on resched
strictness based on the current workload is finished.
2003-02-10 14:11:23 +00:00
Jeff Roberson
407b015791 - Add a new variable 'kg_runtime' that tracks the amount of time we've run.
- Use the ratio of kg_runtime / kg_slptime to determine our dynamic priority.
 - Scale kg_runtime and kg_slptime back when the sum of the two exceeds
   SCHED_SLP_RUN_MAX.  This allows us to slowly forget old behavior.
 - Scale back the runtime and slptime in fork so that the new process has the
   same ratio but much less accumulated time.  This causes new behavior to be
   noticed more quickly.
2003-02-10 14:03:45 +00:00
Jeff Roberson
5d7ef00cfe - Make some context switches conditional on SCHED_STRICT_RESCHED. This may
have some negative effect on interactivity but it yields great perf. gains.
   This also brings the conditions under which ULE context switches inline
   with SCHED_4BSD.
 - Define some new kseq_* functions for manipulating the run queue.
 - Add a new kseq member ksq_rslices and ksq_bload.  rslices is the sum of
   the slices of runnable kses.  This will be used for push load balance
   decisions.  bload is the number of threads blocked waiting on IO.
2003-02-03 05:30:07 +00:00
Jeff Roberson
cd6e33df1c - Stop abusing oncpu for our cpu binding. Define a scheduler local element
in the kse datastructure called ke_cpu.  This is the cpu which we are
   currently bound to.  Some flags may be added later to support hard binding.
2003-02-03 02:26:28 +00:00
Scott Long
7121cce58a Use hz if stathz is zero. Adopted from sched_4bsd. 2003-02-02 08:24:32 +00:00
Jeff Roberson
0a016a05a4 - Use ksq_load as the authoritive count of kses on the pair of kseqs for
sched_runnable() et all.
 - Remove some dead code in sched_clock().
 - Define two macros KSEQ_SELF() and KSEQ_CPU() for getting the kseq of the
   current cpu or some alternate cpu.
 - Start introducing kseq_() functions, such as kseq_choose() and kseq_setup().
2003-01-29 07:00:51 +00:00
Jeff Roberson
bf857e69a2 - Remove debugging code that didn't work on UP. 2003-01-29 00:26:47 +00:00
Jeff Roberson
d465fb9589 - Allow idle's pctcpu time to be calculated. 2003-01-28 09:30:17 +00:00
Jeff Roberson
c9f25d8f92 - Fix the ksq_load calculation. It now reflects the number of entries on the
run queue for each cpu.
 - Introduce kse stealing into the sched_choose() code.  This helps balance
   cpus better in cases where process turnover is high.  This implementation
   is fairly trivial and will likely be only a temporary measure until
   something more sophisticated has been written.
2003-01-28 09:28:20 +00:00
Jeff Roberson
35e6168fcd - Add the ule scheduler. This is intended to be a general purpose process
scheduler with many SMP benefits.  It is still very experimental and should
   be used only in test environments.
2003-01-26 05:23:15 +00:00