it was referenced from.. stops a rather annoying panic, but
introduces a rather interesting but "I can live with it" bug
`ln a b ; mv a b; echo ?`
returns a rather than b..
I know why but I need to think of the 'correct' answer. at least this is 'safe'
I can now do an mv on devices and directories in devfs
This was the hardest part.. link, delete and symlink will follow in
short order.
This code works but has definitly got vnode locking problems
I am electing to get the structure of it working before
spending too much time on the vnode confusion
so it's probably not reliable at the moment..
never-the less it looks good.
:)
added prototypes for every function and
put (void *) as the args to the vop array definitions.
can now compile with:
CWARNFLAGS?= -W -Wreturn-type -Wcomment -Wredundant-decls -Wimplicit \
-Wnested-externs -Wstrict-prototypes -Wmissing-prototypes \
-Winline -Wstrict-prototypes
and only get errors for files external to this module:
namely
./vnode_if.h
../../sys/vnode.h
../../sys/buf.h
../../miscfs/specfs/specdev.h
changes to allow devices that don't probe (e.g. /dev/mem)
to create devfs entries
this required giving 'configure' its own SYSINIT entry
so we could duck in just before it with a DEVFS init
and some device inits..
my devfs now looks like:
./misc
./misc/speaker
./misc/mem
./misc/kmem
./misc/null
./misc/zero
./misc/io
./misc/console
./misc/pcaudio
./misc/pcaudioctl
./disks
./disks/rfloppy
./disks/rfloppy/fd0.1440
./disks/rfloppy/fd1.1200
./disks/floppy
./disks/floppy/fd0.1440
./disks/floppy/fd1.1200
also some sligt cleanups.. DEVFS needs a lot of work
but I'm getting back to it..
calls.
Found by: gcc -Wstrict-prototypes after I supplied some of the 5000+
missing prototypes. Now I have 9000+ lines of warnings and errors
about bogus conversions of function pointers.
SunOS and SCO. You can then even use the pipe as a cheap fifo stack
(yuck!). A semantic change also important (but not limited) to iBCS2
compatibility.
Submitted by: swallace
wrong vp's ops vector being used by changing the VOP_LINK's argument order.
The special-case hack doesn't go far enough and breaks the generic
bypass routine used in some non-leaf filesystems. Pointed out by Kirk
McKusick.
umountable file systems, hung processes, or system panics:
- Some operations could return without decrementing the vnode
reference count.
- Some operations could leave the vnode locked.
- Generalize the /kern/rootdev & rrootdev files so that they
are no longer special cased in kernfs_lookup().
Note: procfs, fdescfs, and most of the other miscfs/* file systems
also suffer from the same type of problems and I will work on
fixing them one at a time.
proc or any VM system structure will have to be rebuilt!!!
Much needed overhaul of the VM system. Included in this first round of
changes:
1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages,
haspage, and sync operations are supported. The haspage interface now
provides information about clusterability. All pager routines now take
struct vm_object's instead of "pagers".
2) Improved data structures. In the previous paradigm, there is constant
confusion caused by pagers being both a data structure ("allocate a
pager") and a collection of routines. The idea of a pager structure has
escentially been eliminated. Objects now have types, and this type is
used to index the appropriate pager. In most cases, items in the pager
structure were duplicated in the object data structure and thus were
unnecessary. In the few cases that remained, a un_pager structure union
was created in the object to contain these items.
3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now
be removed. For instance, vm_object_enter(), vm_object_lookup(),
vm_object_remove(), and the associated object hash list were some of the
things that were removed.
4) simple_lock's removed. Discussion with several people reveals that the
SMP locking primitives used in the VM system aren't likely the mechanism
that we'll be adopting. Even if it were, the locking that was in the code
was very inadequate and would have to be mostly re-done anyway. The
locking in a uni-processor kernel was a no-op but went a long way toward
making the code difficult to read and debug.
5) Places that attempted to kludge-up the fact that we don't have kernel
thread support have been fixed to reflect the reality that we are really
dealing with processes, not threads. The VM system didn't have complete
thread support, so the comments and mis-named routines were just wrong.
We now use tsleep and wakeup directly in the lock routines, for instance.
6) Where appropriate, the pagers have been improved, especially in the
pager_alloc routines. Most of the pager_allocs have been rewritten and
are now faster and easier to maintain.
7) The pagedaemon pageout clustering algorithm has been rewritten and
now tries harder to output an even number of pages before and after
the requested page. This is sort of the reverse of the ideal pagein
algorithm and should provide better overall performance.
8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup
have been removed. Some other unnecessary casts have also been removed.
9) Some almost useless debugging code removed.
10) Terminology of shadow objects vs. backing objects straightened out.
The fact that the vm_object data structure escentially had this
backwards really confused things. The use of "shadow" and "backing
object" throughout the code is now internally consistent and correct
in the Mach terminology.
11) Several minor bug fixes, including one in the vm daemon that caused
0 RSS objects to not get purged as intended.
12) A "default pager" has now been created which cleans up the transition
of objects to the "swap" type. The previous checks throughout the code
for swp->pg_data != NULL were really ugly. This change also provides
the rudiments for future backing of "anonymous" memory by something
other than the swap pager (via the vnode pager, for example), and it
allows the decision about which of these pagers to use to be made
dynamically (although will need some additional decision code to do
this, of course).
13) (dyson) MAP_COPY has been deprecated and the corresponding "copy
object" code has been removed. MAP_COPY was undocumented and non-
standard. It was furthermore broken in several ways which caused its
behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will
continue to work correctly, but via the slightly different semantics
of MAP_PRIVATE.
14) (dyson) Sharing maps have been removed. It's marginal usefulness in a
threads design can be worked around in other ways. Both #12 and #13
were done to simplify the code and improve readability and maintain-
ability. (As were most all of these changes)
TODO:
1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing
this will reduce the vnode pager to a mere fraction of its current size.
2) Rewrite vm_fault and the swap/vnode pagers to use the clustering
information provided by the new haspage pager interface. This will
substantially reduce the overhead by eliminating a large number of
VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be
improved to provide both a "behind" and "ahead" indication of
contiguousness.
3) Implement the extended features of pager_haspage in swap_pager_haspage().
It currently just says 0 pages ahead/behind.
4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps
via a much more general mechanism that could also be used for disk
striping of regular filesystems.
5) Do something to improve the architecture of vm_object_collapse(). The
fact that it makes calls into the swap pager and knows too much about
how the swap pager operates really bothers me. It also doesn't allow
for collapsing of non-swap pager objects ("unnamed" objects backed by
other pagers).
regular user could panic the machine with a simple "tail /proc/curproc/mem"
command. The problem was twofold: both kernfs and procfs didn't fill in
the mnt_stat statfs struct (which would later lead to an integer divide
fault in the vnode pager), and kernfs bogusly paniced if a bmap was
attempted.
Reviewed by: John Dyson
if the 'time on a node is 0,..
tell the world it is the same as 'boottime'.
This is becasue 'time' is not set up when we create the nodes,
so we can't set them then.
Fixed remaining known bugs in the buffer IO and VM system.
vfs_bio.c:
Fixed some race conditions and locking bugs. Improved performance
by removing some (now) unnecessary code and fixing some broken
logic.
Fixed process accounting of # of FS outputs.
Properly handle NFS interrupts (B_EINTR).
(various)
Replaced calls to clrbuf() with calls to an optimized routine
called vfs_bio_clrbuf().
(various FS sync)
Sync out modified vnode_pager backed pages.
ffs_vnops.c:
Do two passes: Sync out file data first, then indirect blocks.
vm_fault.c:
Fixed deadly embrace caused by acquiring locks in the wrong order.
vnode_pager.c:
Changed to use buffer I/O system for writing out modified pages. This
should fix the problem with the modification date previous not getting
updated. Also dramatically simplifies the code. Note that this is
going to change in the future and be implemented via VOP_PUTPAGES().
vm_object.c:
Fixed a pile of bugs related to cleaning (vnode) objects. The performance
of vm_object_page_clean() is terrible when dealing with huge objects,
but this will change when we implement a binary tree to keep the object
pages sorted.
vm_pageout.c:
Fixed broken clustering of pageouts. Fixed race conditions and other
lockup style bugs in the scanning of pages. Improved performance.
VFCF_NETWORK (this FS goes over the net)
VFCF_READONLY (read-write mounts do not make any sense)
VFCF_SYNTHETIC (data in this FS is not real)
VFCF_LOOPBACK (this FS aliases something else)
cd9660 is readonly; nullfs, umapfs, and union are loopback; NFS is netowkr;
procfs, kernfs, and fdesc are synthetic.