plus the previous changes to use the zone allocator decrease the useage
of malloc by half. The Zone allocator will be upgradeable to be able
to use per CPU-pools, and has more intelligent usage of SPLs. Additionally,
it has reasonable stats gathering capabilities, while making most calls
inline.
socket addresses in mbufs. (Socket buffers are the one exception.) A number
of kernel APIs needed to get fixed in order to make this happen. Also,
fix three protocol families which kept PCBs in mbufs to not malloc them
instead. Delete some old compatibility cruft while we're at it, and add
some new routines in the in_cksum family.
reading/writing of mem and regs). Also have to check for the requesting
process being group KMEM -- this is a bit of a hack, but ps et al need it.
Reviewed by: davidg
by Alan Cox <alc@cs.rice.edu>, and his description of the problem.
The bug was primarily in procfs_mem, but the mistake likely happened
due to the lack of vm system support for the operation. I added
better support for selective marking of page dirty flags so that
vm_map_pageable(wiring) will not cause this problem again.
The code in procfs_mem is now less bogus (but maybe still a little
so.)
in procfs_allocvp(). This fixes at least stat() of /proc/*/mem.
stat() of /proc/*/file already worked. I think procfs_allocvp() isn't
actually called for type Pfile.
partly because the #define's for them were moved to a different
file. At least the null VOP_LOCK() no longer works, since vclean()
expects VOP_LOCK( ..., LK_DRAIN | LK_INTERLOCK, ...) to clear the
interlock. This probably only matters when simple_lock() is not
null, i.e., when there are multiple CPUs or SIMPLELOCK_DEBUG is
defined.
changes, so don't expect to be able to run the kernel as-is (very well)
without the appropriate Lite/2 userland changes.
The system boots and can mount UFS filesystems.
Untested: ext2fs, msdosfs, NFS
Known problems: Incorrect Berkeley ID strings in some files.
Mount_std mounts will not work until the getfsent
library routine is changed.
Reviewed by: various people
Submitted by: Jeffery Hsu <hsu@freebsd.org>
This will make a number of things easier in the future, as well as (finally!)
avoiding the Id-smashing problem which has plagued developers for so long.
Boy, I'm glad we're not using sup anymore. This update would have been
insane otherwise.
to information from a single process causes hangs. Specifically, this
fixes problems (hangs) with concurrent ps commands, when the system is under
heavy memory load.
Reviewed by: davidg
but not there. The extent of the object lock is expanded to be over the
range that it is needed. Additionally, clean up the code so that it conforms
to better coding style.
with multiple entries as follows:
start address, end address, resident pages in range, private pages
in range, RW/RO, COW or not, (vnode/device/swap/default).
process won't possibly block before filling in the fsnode pointer (v_data)
which might be dereferenced during a sync since the vnode is put on the
mnt_vnodelist by getnewvnode.
Pointed out by Matt Day <mday@artisoft.com>
This is a really ugly bandaid on the problem, but it works well enough for
'ps -u' to start working again. The problem was caused by the user
address space shrinking by a little bit and the UPAGES being "cast off" to
become a seperate entity rather than being at the top of the process's
vmspace. That optimization was part of John's most recent VM speedups.
Now, rather than decoding the VM space, it merely ensures the pages are
in core and accesses them the same way the ptrace(PT_READ_U..) code does,
ie: off the p->p_addr pointer.
Implement a "variable" directory structure. Files that do not make
sense for the given process do not "appear" and cannot be opened.
For example, "system" processes do not have "file", "regs" or "fpregs",
because they do not have a user area.
"attempt" to fill in the user area of a given process when it is being
accessed via /proc/pid/mem (the user struct is just after
VM_MAXUSER_ADDRESS in the process address space.)
Dont do IO to the U area while it's swapped, hold it in place if possible.
Lock off access to the "ctl" file if it's done a setuid like the other
pseudo-files in there.
Speed up for vfs_bio -- addition of a routine bqrelse to greatly diminish
overhead for merged cache.
Efficiency improvement for vfs_cluster. It used to do alot of redundant
calls to cluster_rbuild.
Correct the ordering for vrele of .text and release of credentials.
Use the selective tlb update for 486/586/P6.
Numerous fixes to the size of objects allocated for files. Additionally,
fixes in the various pagers.
Fixes for proper positioning of vnode_pager_setsize in msdosfs and ext2fs.
Fixes in the swap pager for exhausted resources. The pageout code
will not as readily thrash.
Change the page queue flags (PG_ACTIVE, PG_INACTIVE, PG_FREE, PG_CACHE) into
page queue indices (PQ_ACTIVE, PQ_INACTIVE, PQ_FREE, PQ_CACHE),
thereby improving efficiency of several routines.
Eliminate even more unnecessary vm_page_protect operations.
Significantly speed up process forks.
Make vm_object_page_clean more efficient, thereby eliminating the pause
that happens every 30seconds.
Make sequential clustered writes B_ASYNC instead of B_DELWRI even in the
case of filesystems mounted async.
Fix a panic with busy pages when write clustering is done for non-VMIO
buffers.
it 1138 times (:-() in casts and a few more times in declarations.
This change is null for the i386.
The type has to be `typedef int vop_t(void *)' and not `typedef
int vop_t()' because `gcc -Wstrict-prototypes' warns about the
latter. Since vnode op functions are called with args of different
(struct pointer) types, neither of these function types is any use
for type checking of the arg, so it would be preferable not to use
the complete function type, especially since using the complete
type requires adding 1138 casts to avoid compiler warnings and
another 40+ casts to reverse the function pointer conversions before
calling the functions.
Should anybody out there wonder about this vendetta against global
variables, it is basically to make it more visible what our interfaces
in the kernel really are.
I'm almost convinced we should have a
#define PUBLIC /* public interface */
and use it in the #includes...