devices claiming resources that they don't actually use. The PIC drivers
only register valid interrupt sources, so we don't need to rely on these
drivers to claim invalid IRQs to prevent their use by other drivers.
slave pin on the master PIC in the !APIC_IO case. The PIC drivers now
manage these details internally.
- Remove an spl0() that hasn't done anything since SMPng was first
committed.
- Update some comments that have rotted since SMPng.
- Use intr_suspend/resume() callouts to the interrupt code layer which
suspends and resumes all the known interrupt sources instead of calling
icu_reinit() directly.
APIC Descriptor Table to enumerate both I/O APICs and local APICs. ACPI
does not embed PCI interrupt routing information in the MADT like the MP
Table does. Instead, ACPI stores the PCI interrupt routing information
in the _PRT object under each PCI bus device. The MADT table simply
provides hints about which interrupt vectors map to which I/O APICs. Thus
when using ACPI, the existing ACPI PCI bridge drivers are sufficient to
route PCI interrupts.
- The apic interrupt entry points have been rewritten so that each entry
point can serve 32 different vectors. When the entry is executed, it
uses one of the 32-bit ISR registers to determine which vector in its
assigned range was triggered. Thus, the apic code can support 159
different interrupt vectors with only 5 entry points.
- We now always to disable the local APIC to work around an errata in
certain PPros and then re-enable it again if we decide to use the APICs
to route interrupts.
- We no longer map IO APICs or local APICs using special page table
entries. Instead, we just use pmap_mapdev(). We also no longer
export the virtual address of the local APIC as a global symbol to
the rest of the system, but only in local_apic.c. To aid this, the
APIC ID of each CPU is exported as a per-CPU variable.
- Interrupt sources are provided for each intpin on each IO APIC.
Currently, each source is given a unique interrupt vector meaning that
PCI interrupts are not shared on most machines with an I/O APIC.
That mapping for interrupt sources to interrupt vectors is up to the
APIC enumerator driver however.
- We no longer probe to see if we need to use mixed mode to route IRQ 0,
instead we always use mixed mode to route IRQ 0 for now. This can be
disabled via the 'NO_MIXED_MODE' kernel option.
- The npx(4) driver now always probes to see if a built-in FPU is present
since this test can now be performed with the new APIC code. However,
an SMP kernel will panic if there is more than one CPU and a built-in
FPU is not found.
- PCI interrupts are now properly routed when using APICs to route
interrupts, so remove the hack to psuedo-route interrupts when the
intpin register was read.
- The apic.h header was moved to apicreg.h and a new apicvar.h header
that declares the APIs used by the new APIC code was added.
default we provide 16 interrupt sources for IRQs 0 through 15. However,
if the I/O APIC driver has already registered sources for any of those IRQs
then we will silently fail to register our own source for that IRQ.
Note that i386/isa/icu.h is now specific to the 8259A and no longer
contains any info relevant to APICs. Also note that fast interrupts no
longer use a separate entry point. Instead, both fast and threaded
interrupts share the same entry point which merely looks up the appropriate
source and passes control to intr_execute_handlers().
that provides methods via a PIC driver to do things like mask a source,
unmask a source, enable it when the first interrupt handler is added, etc.
The interrupt code provides a table of interrupt sources indexed by IRQ
numbers, or vectors. These vectors are what new-bus uses for its IRQ
resources and for bus_setup_intr()/bus_teardown_intr(). The interrupt
code then maps that vector a given interrupt source object. When an
interrupt comes in, the low-level interrupt code looks up the interrupt
source for the source that triggered the interrupt and hands it off to
this code to execute the appropriate handlers.
By having an interrupt source abstraction, this allows us to have different
types of interrupt source providers within the shared IRQ address space.
For example, IRQ 0 may map to pin 0 of the master 8259A PIC, IRQs 1
through 60 may map to pins on various I/O APICs, and IRQs 120 through
128 may map to MSI interrupts for various PCI devices.
the root path. This is reported to make non-PXE netbooting, such as
is used on sparc64 systems, work correctly when the TFTP server is
not the same as the root server.
PR: kern/57328
Submitted by: Per Kristian Hove <Per.Hove@math.ntnu.no>
header copy made on input path: this is now handled differently.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
is really EtherExpress or EEPro or what, but it does appear in a
couple of ethernet cards that have appeared recently on ebay. Silicom
appears to make these cards, and they have the 82595TX chipset in
them, and sometimes uarts. The ex driver needs some work to support
these cards, but I thought I'd get the device into pccarddevs.
The hardware driver decides the name under /dev/led and provides
the function to turn the lamp on/off.
All leds are serviced by a single timeout which runs at a basic rate
of hz/10.
The LED is controlled by ascii strings as follows.
0 Turn off.
1 Turn on.
f Flash: _-
f2 Flash: __--
f3 Flash: ___---
f4...f9 etc.
d%d Digits. "d12": -__________-_-______________________________
s%s String, roll your own:
'a-j' gives on for (1...10)/10 sec.
'A-J' gives on for (1...10)/10 sec.
'sAaAbBa': _-_--__-
m%s Morse
'.' dot
'-' dash
' ' letter space
'\n' word space
My mdoc skills do not reach to express that.
Add a sysctl declaration for hw.ata.atapi_dma, which had gone MIA (though
setting it in loader.conf still worked, it was not visible at runtime)
Approved by: sos
to the pci attachment. Cardbus is a derived class of pci so all pci
drivers are automatically available for matching against cardbus devices.
Reviewed by: imp
message encoding and decoding stuff into the base module. All of this
is accessed by several of the NgATM modules and putting this into
atmbase reduceds the memory footprint.
cr.isr sanity check. We actually encounter insanities, which very
likely means that the insanity check itself is insane. Remove an empty
comment while I'm at it.
directly on the radix tree and does not hold any routing table refernces.
This fixes the reference counting problems that manifested itself as a
panic during unmount of filesystems that were mounted by NFS over an
interface that had been removed.
Supported by: FreeBSD Foundation
idle. They figure out that we're idle fast enough that the cache pollution
introduces by scanning their run queue is more expensive than waiting
a little longer.
- Add kseq_setidle() to mark us as being idle. Use this in place of
kseq_find().
- Remove kseq_load_highest(), kseq_find() was the only consumer of this
interface. kseq_balance() has it's own customized version that finds the
lowest and highest loads simultaneously.
Continuously told that this would be faster by: terry
GEOM was not designed to handle media that does not have
a size. Blank CD's are of that type, so cheat and set the
media size to -1. This allows burning to work, but makes
GEOM issue outofrange reads that makes the ATAPI subsystem
spew out a few warnings. GEOM should be tought about this.
GEOM was not designed to handle changing the sectorsize
between opens. Writing multitack CD's with both audio and
data tracks needs to change sector size on the fly. We
cheat here and stuff the current sectorsize into GEOM
private internals. GEOM should grow some clean way for this.
o Fix MFC cards. We were bogusly setting CCR_IOBASE[01] and CCR_IOLIMIT.
now when we activate the resource, we adjust these for MFC cards, per the
spec.
o Change type of pf_mfc_* to be bus_addr_t, which is more correct than
long.
This makes my 3C362D/3C363D and 3CXEM556 cards work! Woo Hoo!
o Remove redundant $FreeBSD$
o Better comments about ep_get_macaddr.
o remove one tab in a switch statement (style only)
o Recognize ID 0x0035 as the device ID for the 3CXEM556 that I have. This
makes the 3CXEM556 work for me. Not 100% sure this is the assigned ID,
as I don't have the datasheets for this part, but it does work and get
the correct ethrnet address.
o Comment about the whole fake IRQ 3 thing. some need it, some don't, all
work with it.
the total load, the timeshare load, and the number of threads that can
be migrated to another cpu. Account for these seperately.
- Introduce a KSE_CAN_MIGRATE() macro which determines whether or not a KSE
can be migrated to another CPU. Currently, this only checks to see if
we're an interrupt handler. Eventually this will also be used to support
CPU binding.
An example of useless is bios.h. An example of wrong is msdos.h (due
to the use of long for 32-bit fields).
display.h cannot be removed because it's used by syscons. That header
however has no platform dependency and shouldn't really be here.
Removal if these headers may cause build failures in the ports tree.
It's the ports that need fixing in that case.
Tested with: buildworld, LINT
previously only considered the send sequence space. Unfortunately,
some OSes (windows) still use a random positive increments scheme for
their syn-ack ISNs, so I must consider receive sequence space as well.
The value of 250000 bytes / second for Microsoft's ISN rate of increase
was determined by testing with an XP machine.
wasn't curthread, i.e. when we receive a thread pointer to use
as a function argument. Use VOP_UNLOCK/vrele in these cases.
The only case there td != curthread known at the moment is
boot() calling sync with thread0 pointer.
This fixes the panic on shutdown people have reported.
slice assignment. Add a comment describing what it does.
- Remove a stale XXX comment, the nice should not impact the interactivity,
nice adjustments only effect non-interactive tasks in ULE.
- Don't allow nice -20 tasks to totally starve nice 0 tasks. Give them at
least SCHED_SLICE_MIN ticks. We still allow nice 0 tasks to starve nice
+20 tasks as intended.
- SCHED_PRI_NRESV does not have the off by one error in PRIO_TOTAL so we
do not have to account for it in the few places that we use it.
Requested by: bde
0 and SCHED_SLP_RUN_MAX * 2. This allows us to simplify the algorithm
quite a bit. Before, it dealt with arbitrary values which required us
to do nasty integer division tricks that didn't quite work out correctly.
- Chnage sched_wakeup() to detect conditions where the slp+runtime could
exceed SCHED_SLP_RUN_MAX * 2. This can happen if we go to sleep for
longer than 6 seconds. In this case, we'll just clear the runtime and
set the sleep time to the max.
- Define a new function, sched_interact_fork() which updates the slp+runtime
of a newly forked thread. We want to limit the amount of history retained
from the parent so that we learn the child's behavior quickly. We don't,
however want to decay it to nothing. Previously, we would simply divide
each parameter by 100 whenever we forked. After a few forks the values
would reach 0 and tasks would not be considered interactive.
- Add another KTR entry, cleanup some existing entries.
- Remove a useless sched_interact_update() from sched_priority(). This is
already done by the callers that require it.
destination objects are locked on entry and exit. Add comments to
the callers noting that the locks can be released by swap_pager_copy().
- Remove several instances of GIANT_REQUIRED.
we will generate for a given ip/port tuple has advanced far enough
for the time_wait socket in question to be safely recycled.
- Have in_pcblookup_local use tcp_twrecycleable to determine if
time_Wait sockets which are hogging local ports can be safely
freed.
This change preserves proper TIME_WAIT behavior under normal
circumstances while allowing for safe and fast recycling whenever
ephemeral port space is scarce.
o change os glue API to be compatible with Linux so hal.o's can
be used on any system
o add ABI version to catch driver-HAL mismatches
o move hal version information from ah_osdep.c to binary component
o remove ath_hal_wait os glue component
o assign constant values to all enums to avoid potential compiler
incompatibilities
o add support for 3Com badged cards (PCI vendor ID)
o add support for IBM mini-pci cards (PCI device ID)
o expose MAC, PHY, and radio hardware revisions
o support for big-endian platforms
o new method to set slot time in us
o bug fix for 5211: beacon timers not setup correctly
o bug fix for 5212: don't crash when handed a 5112 radio
Requested by: jhb
Initialize the real mode stack. This is needed at least for the return
address from the lcall.
Requested by: takawata
Fix style bugs in acpi_wakecode.S
Requested by: bde
Remove the kernel option now that we have the tunable.
to use the direct mapped KVA at KERNBASE to service the request. This also
allows pmap_mapdev() to be used for such addresses very early during the
boot process and might provide some small savings on KVA.
Reviewed by: peter