The place where the function is called can be reached if object loading
and relocation fails too, in which case obj pointer will be NULL. Do not
call process_nodelete then, or crash will follow.
Pointy hat to: kan
Initialize devlist.dev_queue tail queue early enough before its any
potential traversal in freebusdevlist() when in smpphylist error path.
Reported by: Pavel Polyakov <bsd kobyla org> (on irc)
Reviewed by: ken
MFC after: 5 days
if_delmulti() when clearing the configuration for a subinterface when
the parent interface is being detached. The current code was still
triggering an assertion in if_delmulti() due to the parent interface being
partially detached. Fix this by not calling if_delmulti() at all if the
parent interface is being detached. Warn if if_delmulti() fails when the
parent is not being detached (but similar to 208212, still proceed with
tearing down the vlan state).
Tested by: ae@
MFC after: 1 month
Note: This is totally sub-optimal and a work in progress.
* Support filling an empty FIFO TXQ with frames from the ath_buf queue
in the ath_txq list. However, since there's (currently) no clean, easy
way to separate the frames that are in the FIFO versus just waiting,
the code waits for the FIFO to be totally empty before it attempts to
queue more. This is highly sub-optimal but is enough to get the ball
rolling.
* A _lot_ of the code assumes that the TX status is filled out in the
struct ath_buf bf_status field. So for now, memcpy() the completion over.
* None of the TX drain / reset routines will attempt to complete completed
frames before draining, so it can't be used for 802.11n TX aggregation.
(This won't work anyway, as the aggregation TX descriptor API hasn't
yet been converted; and that'll happen in some future commits.)
* Fix an issue where the FIFO counter wasn't being incremented, leading
to the queue logic just plain not working.
* HAL_EIO means "descriptor wasn't valid", versus "not finished, don't
continue." So don't stop processing descriptors when HAL_EIO is hit.
* Don't service frame completion from the beacon queue. It isn't currently
fully setup like a real queue and the first attempt at accessing the
queue lock will panic the kernel.
Tested:
* AR9380, STA mode
This commit is brought to you by said AR9380 in STA mode.
sizeof(struct ath_desc). This isn't correct for EDMA TX descriptors.
This popped up during iperf tests. Ping tests never created frames that
had enough segments to overflow into a second descriptor. However,
an iperf TCP test would do that after a few seconds; the second descriptor
would almost always certainly have garbage.
Tested:
* AR9380, STA mode
* AR9280, STA mode (802.11n TX, legacy TX)
that we still have a problem with this whole structure of
locks and in_input.c [it does not lock which it should not, but
this *can* lead to crashes]. (I have seen it in our SQA
testbed.. besides the one with a refcnt issue that I will
have SQA work on next week ;-)
EDMA code.
* create a new TX EDMA descriptor struct to represent TX EDMA descriptors
when doing debugging;
* implement an EDMA printing function which:
+ hardcodes the TX map size to 4 for now;
+ correctly prints out the number of segments - there's one descriptor
for up to 4 buffers (segments), not one for each segment;
+ print out 4 DS buffer and len pointers;
+ print out the correct number of DWORDs in the TX descriptor.
TODO:
* Remove all of the hard-coded stuff. Ew.
is marked correctly.
The existing logic assumed that the first descriptor is i == 0, which
doesn't hold for EDMA TX. In this instance, the first time filltxdesc()
is called can be up to i == 3.
So for a two-buffer descriptor:
* firstSeg is set to 0;
* lastSeg is set to 1;
* the ath_hal_filltxdesc() code will treat it as the last segment in
a descriptor chain and blank some of the descriptor fields, causing
the TX to stop.
When firstSeg is set to 1 (regardless of lastSeg), it overrides the
lastSeg setting. Thus, ath_hal_filltxdesc() won't blank out these
fields.
Tested: AR9380, STA mode. With this, association is successful.
used, serves very little value given that FreeBSD runs on real H/W
for a long time.
Note that SKI is open-source (see http://ski.sourceforge.net), so
if there's interest and value again, then this code can be revived.
Discussed with: jhb