- isa => nexus
- flags
- GPL_MATH_EMULATE
- document breakage of non-GPL emulator since we use new compiler.
- break lines in paragraohs I touched so that sentenses start on new
lines.
In order to make this work, I created a pseudo-PHY driver to deal with
Macronix chips that use the built-in NWAY support and symbol mode port.
This is actually all of them, with the exception of the original MX98713
which presents its NWAY support via the MII serial interface.
The mxphy driver actually manipulates the controller registers directly
rather than using the miibus_readreg()/miibus_writereg() bus interface
since there are no MII registers to read. The mx driver itself pretends
that the NWAY interface is a PHY locayed at MII address 31 for the sole
purpose of allowing the mxphy_probe() routine to know when it needs to
attach to a host controller.
for the AN985 "Centaur" chip, which is apparently the next genetation
of the "Comet." The AN985 is also a tulip clone and is similar to the
AL981 except that it uses a 99C66 EEPROM and a serial MII interface
(instead of direct access to the PHY registers).
Also updated various documentation to mention the AN985 and created
a loadable module.
I don't think there are any cards that use this chip on the market yet:
the datasheet I got from ADMtek has boxes with big X's in them where the
diagrams should be, and the sample boards I got have chips without any
artwork on them.
the Davicom DM9100 and DM9102 chipsets, including the Jaton Corporation
XPressNet. Datasheet is available from www.davicom8.com.
The DM910x chips are still more tulip clones. The API is reproduced
pretty faithfully, unfortunately the performance is pretty bad. The
transmitter seems to have a lot of problems DMAing multi-fragment
packets. The only way to make it work reliably is to coalesce transmitted
packets into a single contiguous buffer. The Linux driver (written by
Davicom) actually does something similar to this. I can't recomment this
NIC as anything more than a "connectivity solution."
This driver uses newbus and miibus and is supported on both i386
and alpha platforms.
SiS 900 and SiS 7016 PCI fast ethernet chipsets. Full manuals for the
SiS chips can be found at www.sis.com.tw.
This is a fairly simple chipset. The receiver uses a 128-bit multicast
hash table and single perfect entry for the station address. Transmit and
receive DMA and FIFO thresholds are easily tuneable. Documentation is
pretty decent and performance is not bad, even on my crufty 486. This
driver uses newbus and miibus and is supported on both the i386 and
alpha architectures.
PCI fast ethernet controller. Currently, the only card I know that uses
this chip is the D-Link DFE-550TX. (Don't ask me where to buy these: the
only cards I have are samples sent to me by D-Link.)
This driver is the first to make use of the miibus code once I'm sure
it all works together nicely, I'll start converting the other drivers.
The Sundance chip is a clone of the 3Com 3c90x Etherlink XL design
only with its own register layout. Support is provided for ifmedia,
hardware multicast filtering, bridging and promiscuous mode.
- Sort xrefs
- FreeBSD.ORG -> FreeBSD.org
- Be consistent with section names as outlined in mdoc(7).
- Other misc mdoc cleanup.
PR: doc/13144
Submitted by: Alexey M. Zelkin <phantom@cris.net>
ethernet controllers based on the AIC-6915 "Starfire" controller chip.
There are single port, dual port and quad port cards, plus one 100baseFX
card. All are 64-bit PCI devices, except one single port model.
The Starfire would be a very nice chip were it not for the fact that
receive buffers have to be longword aligned. This requires buffer
copying in order to achieve proper payload alignment on the alpha.
Payload alignment is enforced on both the alpha and x86 platforms.
The Starfire has several different DMA descriptor formats and transfer
mechanisms. This driver uses frame descriptors for transmission which
can address up to 14 packet fragments, and a single fragment descriptor
for receive. It also uses the producer/consumer model and completion
queues for both transmit and receive. The transmit ring has 128
descriptors and the receive ring has 256.
This driver supports both FreeBSD/i386 and FreeBSD/alpha, and uses newbus
so that it can be compiled as a loadable kernel module. Support for BPF
and hardware multicast filtering is included.