(reporting IFM_LOOP based on BMCR_LOOP is left in place though as
it might provide useful for debugging). For most mii(4) drivers it
was unclear whether the PHYs driven by them actually support
loopback or not. Moreover, typically loopback mode also needs to
be activated on the MAC, which none of the Ethernet drivers using
mii(4) implements. Given that loopback media has no real use (and
obviously hardly had a chance to actually work) besides for driver
development (which just loopback mode should be sufficient for
though, i.e one doesn't necessary need support for loopback media)
support for it is just dropped as both NetBSD and OpenBSD already
did quite some time ago.
- Let mii_phy_add_media() also announce the support of IFM_NONE.
- Restructure the PHY entry points to use a structure of entry points
instead of discrete function pointers, and extend this to include
a "reset" entry point. Make sure any PHY-specific reset routine is
always used, and provide one for lxtphy(4) which disables MII
interrupts (as is done for a few other PHYs we have drivers for).
This includes changing NIC drivers which previously just called the
generic mii_phy_reset() to now actually call the PHY-specific reset
routine, which might be crucial in some cases. While at it, the
redundant checks in these NIC drivers for mii->mii_instance not being
zero before calling the reset routines were removed because as soon
as one PHY driver attaches mii->mii_instance is incremented and we
hardly can end up in their media change callbacks etc if no PHY driver
has attached as mii_attach() would have failed in that case and not
attach a miibus(4) instance.
Consequently, NIC drivers now no longer should call mii_phy_reset()
directly, so it was removed from EXPORT_SYMS.
- Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe().
The purpose of that function is to perform the common steps to attach
a PHY driver instance and to hook it up to the miibus(4) instance and to
optionally also handle the probing, addition and initialization of the
supported media. So all a PHY driver without any special requirements
has to do in its bus attach method is to call mii_phy_dev_attach()
along with PHY-specific MIIF_* flags, a pointer to its PHY functions
and the add_media set to one. All PHY drivers were updated to take
advantage of mii_phy_dev_attach() as appropriate. Along with these
changes the capability mask was added to the mii_softc structure so
PHY drivers taking advantage of mii_phy_dev_attach() but still
handling media on their own do not need to fiddle with the MII attach
arguments anyway.
- Keep track of the PHY offset in the mii_softc structure. This is done
for compatibility with NetBSD/OpenBSD.
- Keep track of the PHY's OUI, model and revision in the mii_softc
structure. Several PHY drivers require this information also after
attaching and previously had to wrap their own softc around mii_softc.
NetBSD/OpenBSD also keep track of the model and revision on their
mii_softc structure. All PHY drivers were updated to take advantage
as appropriate.
- Convert the mebers of the MII data structure to unsigned where
appropriate. This is partly inspired by NetBSD/OpenBSD.
- According to IEEE 802.3-2002 the bits actually have to be reversed
when mapping an OUI to the MII ID registers. All PHY drivers and
miidevs where changed as necessary. Actually this now again allows to
largely share miidevs with NetBSD, which fixed this problem already
9 years ago. Consequently miidevs was synced as far as possible.
- Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that
weren't explicitly converted to support flow control before. It's
unclear whether flow control actually works with these but typically
it should and their net behavior should be more correct with these
changes in place than without if the MAC driver sets MIIF_DOPAUSE.
Obtained from: NetBSD (partially)
Reviewed by: yongari (earlier version), silence on arch@ and net@
replace mii_phy_probe() altogether. Compared to the latter the advantages
of mii_attach() are:
- intended to be called multiple times in order to attach PHYs in multiple
passes (f.e. in order to only use sub-ranges of the 0 to MII_NPHY - 1
range)
- being able to pass along the capability mask from the NIC to the PHY
drivers
- being able to specify at which address (phyloc) to probe for a PHY
(instead of always probing at all addresses from 0 to MII_NPHY - 1)
- being able to specify which PHY instance (offloc) to attach
- being able to pass along MIIF_* flags from the NIC to the PHY drivers
(f.e. as required to indicated to the PHY drivers that flow control is
supported by the NIC driver, which actually is the motivation for this
change).
While at it, I used the opportunity to get rid of some hacks in mii(4)
like miibus_probe() generally doing work besides sheer probing and the
"EVIL HACK" (which will vanish entirely along with mii_phy_probe()) by
passing the struct ifnet pointer via an argument of mii_attach() as well
as to fix some resource leaks in mii(4) in case something fails.
Commits which will update the PHY drivers to honor the MII flags passed
down from the NIC drivers and take advantage of mii_attach() to get rid
of certain types of hacks in NIC and PHY drivers as well as a conversion
of the remaining uses of mii_phy_probe() will follow shortly.
Reviewed by: jhb, yongari
Obtained from: NetBSD (partially)
DP83847 PHYs. The main reason for using a specific driver for these
PHYs are reset quirks similar to the nsphy(4) driven DP83840A.
PR: 112654
Obtained from: NetBSD
MFC after: 2 weeks
Thanks to: mlaier for testing w/ DP83815
ethernet chips. This driver is pretty simple, however it contains
special DSP initialization code which is needed in order to get
the chip to negotiate a gigE link. (This special initialization
may not be needed in subsequent chip revs.) Also:
- Fix typo in if_rlreg.h (RL_GMEDIASTAT_1000MPS -> RL_GMEDIASTAT_1000MBPS)
- Deal with shared interrupts in re_intr(): if interface isn't up,
return.
- Fix another bug in re_gmii_writereg() (properly apply data field mask)
- Allow PHY driver to read the RL_GMEDIASTAT register via the
re_gmii_readreg() register (this is register needed to determine
real time link/media status).
and DP83821 gigabit ethernet MAC chips and the NatSemi DP83861 10/100/1000
copper PHY. There are a whole bunch of very low cost cards available with
this chipset selling for $150USD or less. This includes the SMC9462TX,
D-Link DGE-500T, Asante GigaNIX 1000TA and 1000TPC, and a couple cards
from Addtron.
This chip supports TCP/IP checksum offload, VLAN tagging/insertion.
2048-bit multicast filter, jumbograms and has 8K TX and 32K RX FIFOs.
I have not done serious performance testing with this driver. I know
it works, and I want it under CVS control so I can keep tabs on it.
Note that there's no serious mutex stuff in here yet either: I need
to talk more with jhb to figure out the right way to do this. That
said, I don't think there will be any problems.
This driver should also work on the alpha. It's not turned on in
GENERIC.
This means that the kernel can be totally self contained now and is not
dependent on the last buildworld to update /usr/share/mk. This might
also make it easier to build 5.x kernels on 4.0 boxes etc, assuming
gensetdefs and config(8) are updated.
- Break out the support for the XMAC II's PHY into an miibus driver.
- Reorganize the probe/attach stuff using newbus. Each XMAC is now
attached to the parent GEnesis controller using newbus. This is
necessary since each XMAC must also have an attached miibus, and
the miibus read/write register routines need to be able to get
at the softc struct for each XMAC, not the one for the parent
controller. This allows me to get rid of the grotty code I added
for selecting the unit numbers for the ifnet interfaces: the unit
numbers are now derived from the newbus-assigned unit numbers,
which should track with the ifnet interface numbers. I think.
At the very least, there should never be any collisions.
- Add support for the SK-9821 and SK-9822 1000baseTX adapters. Special
thanks to SysKonnect for loaning me two adapters for testing.
which it replaces. The new driver supports all of the chips supported
by the ones it replaces, as well as many DEC/Intel 21143 10/100 cards.
This also completes my quest to convert things to miibus and add
Alpha support.
In order to make this work, I created a pseudo-PHY driver to deal with
Macronix chips that use the built-in NWAY support and symbol mode port.
This is actually all of them, with the exception of the original MX98713
which presents its NWAY support via the MII serial interface.
The mxphy driver actually manipulates the controller registers directly
rather than using the miibus_readreg()/miibus_writereg() bus interface
since there are no MII registers to read. The mx driver itself pretends
that the NWAY interface is a PHY locayed at MII address 31 for the sole
purpose of allowing the mxphy_probe() routine to know when it needs to
attach to a host controller.
this PHY and the Davicom DM9101 have exactly the same register definitions.
One of them is probably a clone of the other. I'm not sure which.
This is needed for the Davicom DM9102 10/100 PCI ethernet driver which
will be committed shortly.
MII-compliant PHY drivers. Many 10/100 ethernet NICs available today
either use an MII transceiver or have built-in transceivers that can
be programmed using an MII interface. It makes sense then to separate
this support out into common code instead of duplicating it in all
of the NIC drivers. The mii code also handles all of the media
detection, selection and reporting via the ifmedia interface.
This is basically the same code from NetBSD's /sys/dev/mii, except
it's been adapted to FreeBSD's bus architecture. The advantage to this
is that it automatically allows everything to be turned into a
loadable module. There are some common functions for use in drivers
once an miibus has been attached (mii_mediachg(), mii_pollstat(),
mii_tick()) as well as individual PHY drivers. There is also a
generic driver for all PHYs that aren't handled by a specific driver.
It's possible to do this because all 10/100 PHYs implement the same
general register set in addition to their vendor-specific register
sets, so for the most part you can use one driver for pretty much
any PHY. There are a couple of oddball exceptions though, hence
the need to have specific drivers.
There are two layers: the generic "miibus" layer and the PHY driver
layer. The drivers are child devices of "miibus" and the "miibus" is
a child of a given NIC driver. The "miibus" code and the PHY drivers
can actually be compiled and kldoaded as completely separate modules
or compiled together into one module. For the moment I'm using the
latter approach since the code is relatively small.
Currently there are only three PHY drivers here: the generic driver,
the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding
others later as I convert various NIC drivers to use this code.
I realize that I'm cvs adding this stuff instead of importing it
onto a separate vendor branch, but in my opinion the import approach
doesn't really offer any significant advantage: I'm going to be
maintaining this stuff and writing my own PHY drivers one way or
the other.