An initial tidyup of the mount() syscall and VFS mount code.
This code replaces the earlier work done by jlemon in an attempt to
make linux_mount() work.
* the guts of the mount work has been moved into vfs_mount().
* move `type', `path' and `flags' from being userland variables into being
kernel variables in vfs_mount(). `data' remains a pointer into
userspace.
* Attempt to verify the `type' and `path' strings passed to vfs_mount()
aren't too long.
* rework mount() and linux_mount() to take the userland parameters
(besides data, as mentioned) and pass kernel variables to vfs_mount().
(linux_mount() already did this, I've just tidied it up a little more.)
* remove the copyin*() stuff for `path'. `data' still requires copyin*()
since its a pointer into userland.
* set `mount->mnt_statf_mntonname' in vfs_mount() rather than in each
filesystem. This variable is generally initialised with `path', and
each filesystem can override it if they want to.
* NOTE: f_mntonname is intiailised with "/" in the case of a root mount.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
Add lockdestroy() and appropriate invocations, which corresponds to
lockinit() and must be called to clean up after a lockmgr lock is no
longer needed.
Add correct support for v_object management, so mmap() operation should
work properly.
Add support for extattrctl() routine (submitted by semenu).
At this point nullfs can be considered as functional and much more stable.
In fact, it should behave as a "hard" "symlink" to underlying filesystem.
Reviewed in general by: mckusick, dillon
Parts of logic obtained from: NetBSD
at this point):
Replace all '#ifdef DEBUG' with '#ifdef NULLFS_DEBUG' and add NULLFSDEBUG
macro.
Protect nullfs hash table with lockmgr.
Use proper order of operations when freeing mnt_data.
Return correct fsid in the null_getattr().
Add null_open() function to catch MNT_NODEV (obtained from NetBSD).
Add null_rename() to catch cross-fs rename operations (submitted by
Ustimenko Semen <semen@iclub.nsu.ru>)
Remove duplicate $FreeBSD$ tags.
is an application space macro and the applications are supposed to be free
to use it as they please (but cannot). This is consistant with the other
BSD's who made this change quite some time ago. More commits to come.
* lockstatus() and VOP_ISLOCKED() gets a new process argument and a new
return value: LK_EXCLOTHER, when the lock is held exclusively by another
process.
* The ASSERT_VOP_(UN)LOCKED family is extended to use what this gives them
* Extend the vnode_if.src format to allow more exact specification than
locked/unlocked.
This commit should not do any semantic changes unless you are using
DEBUG_VFS_LOCKS.
Discussed with: grog, mch, peter, phk
Reviewed by: peter
the other XXXFS_DIAGNOSTIC options (not very) and mostly controlled
tracing of normal operation. Use `#ifdef DEBUG' for non-diagnostics
and `#ifdef DIAGNOSTIC' for diagnostics.
references to them.
The change a couple of days ago to ignore these numbers in statically
configured vfsconf structs was slightly premature because the cd9660,
cfs, devfs, ext2fs, nfs vfs's still used MOUNT_* instead of the number
in their vfsconf struct.
respectively. Most of the longs should probably have been
u_longs, but this changes is just to prevent warnings about
casts between pointers and integers of different sizes, not
to fix poorly chosen types.
as the value in b_vp is often not really what you want.
(and needs to be frobbed). more cleanups will follow this.
Reviewed by: Bruce Evans <bde@freebsd.org>
Reverse the VFS_VRELE patch. Reference counting of vnodes does not need
to be done per-fs. I noticed this while fixing vfs layering violations.
Doing reference counting in generic code is also the preference cited by
John Heidemann in recent discussions with him.
The implementation of alternative vnode management per-fs is still a valid
requirement for some filesystems but will be revisited sometime later,
most likely using a different framework.
Submitted by: Michael Hancock <michaelh@cet.co.jp>
a complement to all ops that return a vpp, VFS_VRELE. This is
initially only for file systems that implement the following ops
that do a WILLRELE:
vop_create, vop_whiteout, vop_mknod, vop_remove, vop_link,
vop_rename, vop_mkdir, vop_rmdir, vop_symlink
This is initial DNA that doesn't do anything yet. VFS_VRELE is
implemented but not called.
A default vfs_vrele was created for fs implementations that use the
standard vnode management routines.
VFS_VRELE implementations were made for the following file systems:
Standard (vfs_vrele)
ffs mfs nfs msdosfs devfs ext2fs
Custom
union umapfs
Just EOPNOTSUPP
fdesc procfs kernfs portal cd9660
These implementations may change as VOP changes are implemented.
In the next phase, in the vop implementations calls to vrele and the vrele
part of vput will be moved to the top layer vfs_vnops and made visible
to all layers. vput will be replaced by unlock in these cases. Unlocking
will still be done in the per fs layer but the refcount decrement will be
triggered at the top because it doesn't hurt to hold a vnode reference a
little longer. This will have minimal impact on the structure of the
existing code.
This will only be done for vnode arguments that are released by the various
fs vop implementations.
Wider use of VFS_VRELE will likely require restructuring of the code.
Reviewed by: phk, dyson, terry et. al.
Submitted by: Michael Hancock <michaelh@cet.co.jp>
1. Remove comment stating the blatantly obvious.
2. Align in two columns.
3. Sort all but the default element alphabetically.
4. Remove XXX comments pointing out entries not needed.
Distribute all but the most fundamental malloc types. This time I also
remembered the trick to making things static: Put "static" in front of
them.
A couple of finer points by: bde