Commit Graph

1405 Commits

Author SHA1 Message Date
adrian
40f8a2948b Update the EWMA statistics for each intermediary rate as well as the final
rate.

This fixes two things:

* The intermediary rates now also have their EWMA values changed;
* The existing code was using the wrong value for longtries - so the
  EWMA stats were only adjusted for the first rate and not subsequent
  rates in a MRR setup.

TODO:

* Merge the EWMA updates into update_stats() now..
2013-02-26 10:24:49 +00:00
adrian
87ffef3129 Part #2 of the TX chainmask changes:
* Remove ar5416UpdateChainmasks();
* Remove the TX chainmask override code from the ar5416 TX descriptor
  setup routines;
* Write a driver method to calculate the current chainmask based on the
  operating mode and update the driver state;
* Call the HAL chainmask method before calling ath_hal_reset();
* Use the currently configured chainmask in the TX descriptors rather than
  the hardware TX chainmasks.

Tested:

* AR5416, STA/AP mode - legacy and 11n modes
2013-02-25 22:45:02 +00:00
adrian
703d39b946 Begin adding support to explicitly set the current chainmask.
Right now the only way to set the chainmask is to set the hardware
configured chainmask through capabilities.  This is fine for forcing
the chainmask to be something other than what the hardware is capable
of (eg to reduce TX/RX to one connected antenna) but it does change what
the HAL hardware chainmask configuration is.

For operational mode changes, it (may?) make sense to separately control
the TX/RX chainmask.

Right now it's done as part of ar5416_reset.c - ar5416UpdateChainMasks()
calculates which TX/RX chainmasks to enable based on the operating mode.
(1 for legacy and whatever is supported for 11n operation.)  But doing
this in the HAL is suboptimal - the driver needs to know the currently
configured chainmask in order to correctly enable things for each
TX descriptor.  This is currently done by overriding the chainmask
config in the ar5416 TX routines but this has to disappear - the AR9300
HAL support requires the driver to dynamically set the TX chainmask based
on the TX power and TX rate in order to meet mini-PCIe slot power
requirements.

So:

* Introduce a new HAL method to set the operational chainmask variables;
* Introduce null methods for the previous generation chipsets;
* Add new driver state to record the current chainmask separate from
  the hardware configured chainmask.

Part #2 of this will involve disabling ar5416UpdateChainMasks() and moving
it into the driver; as well as properly programming the TX chainmask
based on the currently configured HAL chainmask.

Tested:

* AR5416, STA mode - both legacy (11a/11bg) and 11n rates - verified
  that AR_SELFGEN_MASK (the chainmask used for self-generated frames like
  ACKs and RTSes) is correct, as well as the TX descriptor contents is
  correct.
2013-02-25 22:42:43 +00:00
adrian
48730f45ab Add a workaround for AR5416, AR9130 and AR9160 chipsets - work around
an incorrectly calculated RTS duration value when transmitting aggregates.

These earlier 802.11n NICs incorrectly used the ACK duration time when
calculating what to put in the RTS of an aggregate frame.  Instead it
should have used the block-ack time.  The result is that other stations
may not reserve enough time and start transmitting _over_ the top of
the in-progress blockack field.  Tsk.

This workaround is to popuate the burst duration field with the delta
between the ACK duration the hardware is using and the required duration
for the block-ack.  The result is that the RTS field should now contain
the correct duration for the subsequent block-ack.

This doesn't apply for AR9280 and later NICs.

Obtained from:	Qualcomm Atheros
2013-02-22 07:07:11 +00:00
adrian
1fef9d2b80 Disable debugging entries about BAW issues. I haven't seen any issues
to do with BAW tracking in the last 9 months or so.
2013-02-21 21:47:35 +00:00
adrian
ea3da6a7c3 Be slightly more paranoid with the TX DMA buffer maximum threshold.
Specifically - never jack the TX FIFO threshold up to the absolute
maximum; always leave enough space for two DMA transactions to
appear.

This is a paranoia from the Linux ath9k driver.  It can't hurt.

Obtained from:	Linux ath9k
2013-02-21 08:42:40 +00:00
adrian
0e80cda705 Add an option to allow the minimum number of delimiters to be tweaked.
This is primarily for debugging purposes.

Tested:

* AR5416, STA mode
2013-02-21 06:38:49 +00:00
adrian
0f283d69d7 Add a new option to limit the maximum size of aggregates.
The default is to limit them to what the hardware is capable of.

Add sysctl twiddles for both the non-RTS and RTS protected aggregate
generation.

Whilst here, add some comments about stuff that I've discovered during
my exploration of the TX aggregate / delimiter setup path from the
reference driver.
2013-02-21 06:18:40 +00:00
adrian
770f143d2f Remove this unneeded printf(), sorry! 2013-02-21 02:52:13 +00:00
adrian
5f4ebdbfb8 Configure larger TX FIFO default and maximum level values.
This has reduced the number of TX delimiter and data underruns when
doing large UDP transfers (>100mbit).

This stops any HAL_INT_TXURN interrupts from occuring, which is a good
sign!

Obtained from:	Qualcomm Atheros
2013-02-20 12:14:49 +00:00
adrian
5ee708ace2 If any of the TX queues have underrun reporting enabled, enable
HAL_INT_TXURN in the interrupt mask register.

This should now allow for TXURN interrupts to be posted.
2013-02-20 11:24:11 +00:00
adrian
9d7988b307 A couple of quick tidyups:
* Delete this debugging print - I used it when debugging the initial
  TX descriptor chaining code.  It now works, so let's toss it.
  It just confuses people if they enable TX descriptor debugging as they
  get two slightly different versions of the same descriptor.

* Indenting.
2013-02-20 11:22:44 +00:00
adrian
1a2115d05c Enable TX FIFO underrun interrupts. This allows the TX FIFO threshold
adjustment code to now run.

Tested:

* AR5416, STA

TODO:

* Much more thorough testing on the other chips, AR5210 -> AR9287
2013-02-20 11:20:51 +00:00
adrian
562872b481 oops, tab! 2013-02-20 11:17:29 +00:00
adrian
c6a80fccc4 Post interrupts in the ath alq trace. 2013-02-20 11:17:03 +00:00
adrian
1030caa384 CFG_ERR, DATA_UNDERRUN and DELIM_UNDERRUN are all flags, rather than
part of ts_status. Thus:

* make sure we decode them from ts_flags, rather than ts_status;
* make sure we decode them regardless of whether there's an error or not.

This correctly exposes descriptor configuration errors, TX delimiter
underruns and TX data underruns.
2013-02-20 11:14:55 +00:00
adrian
3d5fb5a458 Fix an incorrect sizeof()
PR:		kern/176238
Submitted by:	Christoph Mallon <christoph.mallon@gmx.de>
2013-02-18 18:39:15 +00:00
adrian
bad82cfd14 Add a new ATH KTR debug method to log the interrupt status. 2013-02-18 04:10:38 +00:00
adrian
1c8066ed1e * Reduce the PCU lock overhead a little by only re-acquiring it if we
actually do have to reinitialise the RX side of things after an RX
  descriptor EOL error.

* Revert a change of mine from quite a while ago - don't shortcut the
  RX initialisation path.  There's a RX FIFO bug in the earlier chips
  (I'm not sure when it was fixed in this series, but it's fixed
  with the AR9380 and later) which causes the same RX descriptor to
  be written to over and over.  This causes the descriptor to be
  marked as "done", and this ends up causing the whole RX path to
  go very strange.  This should fixed the "kickpcu; handled X packets"
  message spam where "X" is consistently small.
2013-02-16 19:11:57 +00:00
adrian
af7893e0d4 Pull out the if_transmit() work and revert back to ath_start().
My changed had some rather significant behavioural changes to throughput.
The two issues I noticed:

* With if_start and the ifnet mbuf queue, any temporary latency
  would get eaten up by some mbufs being queued.  With ath_transmit()
  queuing things to ath_buf's, I'd only get 512 TX buffers before I
  couldn't queue any further frames.

* There's also some non-zero latency involved with TX being pushed
  into a taskqueue via direct dispatch.  Any time the scheduler didn't
  immediately schedule the ath TX task would cause extra latency.
  Various 1ge/10ge drivers implement both direct dispatch (if the TX
  lock can be acquired) and deferred task transmission (if the TX lock
  can't be acquired), with frames being pushed into a drbd queue.
  I'll have to do this at some point, but until I figure out how to
  deal with 802.11 fragments, I'll have to wait a while longer.

So what I saw:

* lots of extra latency, specially under load - if the taskqueue
  wasn't immediately scheduled, things went pear shaped;

* any extra latency would result in TX ath_buf's taking their sweet time
  being replenished, so any further calls to ath_transmit() would drop
  mbufs.

* .. yes, there's no explicit backpressure here - things are just dropped.
  Eek.

With this, the general performance has gone up, but those subtle if_start()
related race conditions are back.  For some reason, this is doubly-obvious
with the AR5416 NIC and I don't quite understand why yet.

There's an unrelated issue with AR5416 performance in STA mode (it's
fine in AP mode when bridging frames, weirdly..) that requires a little
further investigation.  Specifically - it works fine on a Lenovo T40
(single core CPU) running a March 2012 9-STABLE kernel, but a Lenovo T60
(dual core) running an early November 2012 kernel behaves very poorly.
The same hardware with an AR9160 or AR9280 behaves perfectly.
2013-02-13 05:32:19 +00:00
adrian
906d1d6133 Put this back into the ath taskqueue rather than the ath TX taskqueue.
This now should mean all the entry points into the software TX
scheduler are back in the same taskqueue.
2013-02-11 07:49:40 +00:00
adrian
634ed08a4e Go back to direct-dispatch of the software queue and frame TX paths
when they're being called from the TX completion handler.

Going (back) through the taskqueue is just adding extra locking and
latency to packet operations.  This improves performance a little bit
on most NICs.

It still hasn't restored the original performance of the AR5416 NIC
but the AR9160, AR9280 and later NICs behave very well with this.

Tested:

* AR5416 STA (still tops out at ~ 70mbit TCP, rather than 150mbit TCP..)
* AR9160 hostap (good for both TX and RX)
* AR9280 hostap (good for both TX and RX)
2013-02-11 07:48:26 +00:00
adrian
283715c7dc Extend the timestamp to be a timeval, rather than ticks.
This makes it easier to see TX and RX buffer latencies.
2013-02-11 02:48:49 +00:00
adrian
611862e52c The encryption type field needs to be preserved for each descriptor
making up a frame, in both a sub-frame and for all frames in an
aggregate.

Tested:

* AR5416, STA mode
2013-02-09 02:42:01 +00:00
adrian
4acae54565 Fix a corner case that I noticed with the AR5416 (and it's currently
crappy 802.11n performance, sigh.)

With the AR5416, aggregates need to be limited to 8KiB if RTS/CTS is
enabled.  However, larger aggregates were going out with RTSCTS enabled.
The following was going on:

* The first buffer in the list would have RTS/CTS enabled in
  bf->bf_state.txflags;
* The aggregate would be formed;
* The "copy over the txflags from the first buffer" logic that I added
  blanked the RTS/CTS TX flags fields, and then copied the bf_first
  RTS/CTS flags over;
* .. but that'd cause bf_first to be blanked out! And thus the flag
  was cleared;
* So the rest of the aggregate formation would run with those flags
  cleared, and thus > 8KiB aggregates were formed.

The driver is now (again) correctly limiting aggregate formation for
the AR5416 but there are still other pending issues to resolve.

Tested:

* AR5416, STA mode
2013-02-08 09:07:03 +00:00
adrian
f4d6b3f3b9 Create a new TX lock specifically for queuing frames.
This now separates out the act of queuing frames from the act of running
TX and TX completion.
2013-02-07 07:50:16 +00:00
adrian
c05e12cd73 Methodize the process of adding the software TX queue to the taskqueue.
Move it (for now) to the TX taskqueue.
2013-02-07 02:15:25 +00:00
adrian
e33dc79d8e Work around some rather unfortunate race conditions inside net80211.
Right now, ic_curchan seems to be updated rather quickly (ie, during
the ioctl) and before the driver gets notified of what's going on.
So what I was seeing was:

* NIC was in channel X;
* It generates PHY errors for channel X;
* an ioctl comes along from userland and changes things to channel Y;
* .. this updates ic_curchan, but hasn't yet reset the hardware;
* in parallel, RX is occuring and it looks at ic_curchan;
* .. which is channel Y, so events get stamped with that now.

Sigh.
2013-01-31 00:14:25 +00:00
pfg
245e35ae97 Clean some 'svn:executable' properties in the tree.
Submitted by:	Christoph Mallon
MFC after:	3 days
2013-01-26 22:08:21 +00:00
adrian
70d3c0881d Migrate the TX sending code out from under the ath0 taskq and into
the separate ath0 TX taskq.

Whilst here, make sure that the TX software scheduler is also
running out of the TX task, rather than the ath0 taskqueue.

Make sure that the tx taskqueue is blocked/unblocked as necessary.

This allows for a little more parallelism on multi-core machines,
as well as (eventually) supporting a higher task priority for TX
tasks, allowing said TX task to preempt an already running RX or
TX completion task.

Tested:

* AR5416, AR9280 hostap and STA modes
2013-01-26 00:14:34 +00:00
adrian
7a0ff694d2 Fix this routine to acutally break out and not set clrdmask if any
of the TIDs are currently marked as "filtered."
2013-01-21 07:50:38 +00:00
adrian
88e660f780 Migrate CLRDMASK to be a per-node flag, rather than a per-TID flag.
This is easily possible now that the TX is protected by a single
lock, rather than a per-TXQ (and thus per-TID) lock.

Only set CLRDMASK if none of the destinations are filtered.
This likely will need some tuning when it comes time to do UASPD/PS-POLL
TX, however at that point it should be manually set anyway.

Tested:

* AR9280, STA mode

TODO:

* More thorough testing in AP mode
* test other chipsets, just to be safe/sure.
2013-01-21 04:06:04 +00:00
adrian
0aa13972fd Fix hangs (exposed by spectral scan activity) in STA mode when the
chip hangs.

* Always do a reset in ath_bmiss_proc(), regardless of whether the
  hardware is "hung" or not.  Specifically, for spectral scan, there's
  likely a whole bunch of potential hangs that we don't (yet) recognise
  in the HAL.  So to avoid staying RX deaf persisting until the station
  disassociates, just do a no-loss reset.

* Set sc_beacons=1 in STA mode.  During a reset, the beacon programming
  isn't done.  (It's likely I need to set sc_syncbeacons during a hang
  reset, but I digress.)  Thus after a reset, there's no beacon timer
  programming to send a BMISS interrupt if beacons aren't heard ..
  thus if the AP disappears, you won't get notified and you'll have to
  reset your interface.

This hasn't yet fixed all of the hangs that I've seen when debugging
spectral scan, but it's certainly reduced the hang frequency and it
should improve general STA stability in very noisy environments.

Tested:

* AR9280, STA mode, spectral scan off/on

PR:		kern/175227
2013-01-17 16:43:59 +00:00
adrian
fbc0640f87 Add a quick work-around if ath_beacon_config() to not die if it's called
when an interface is going down.

Right now it's quite possible (but very unlikely!) that ath_reset()
or similar is called, leading to a beacon config call, in parallel with
the last VAP being destroyed.

This likely should be fixed by making sure the bmiss/bstuck/watchdog
taskqueues are canceled whenever the last VAP is destroyed.
2013-01-17 16:26:40 +00:00
adrian
6898bbc5c8 Implement frame (data) transmission using if_transmit(), rather than
if_start().

This removes the overlapping data path TX from occuring, which
solves quite a number of the potential TX queue races in ath(4).
It doesn't fix the net80211 layer TX queue races and it doesn't
fix the raw TX path yet, but it's an important step towards this.

This hasn't dropped the TX performance in my testing; primarily
because now the TX path can quickly queue frames and continue
along processing.

This involves a few rather deep changes:

* Use the ath_buf as a queue placeholder for now, as we need to be
  able to support queuing a list of mbufs (ie, when transmitting
  fragments) and m_nextpkt can't be used here (because it's what is
  joining the fragments together)

* if_transmit() now simply allocates the ath_buf and queues it to
  a driver TX staging queue.

* TX is now moved into a taskqueue function.

* The TX taskqueue function now dequeues and transmits frames.

* Fragments are handled correctly here - as the current API passes
  the fragment list as one mbuf list (joined with m_nextpkt) through
  to the driver if_transmit().

* For the couple of places where ath_start() may be called (mostly
  from net80211 when starting the VAP up again), just reimplement
  it using the new enqueue and taskqueue methods.

What I don't like (about this work and the TX code in general):

* I'm using the same lock for the staging TX queue management and the
  actual TX.  This isn't required; I'm just being slack.

* I haven't yet moved TX to a separate taskqueue (but the taskqueue is
  created); it's easy enough to do this later if necessary.  I just need
  to make sure it's a higher priority queue, so TX has the same
  behaviour as it used to (where it would preempt existing RX..)

* I need to re-review the TX path a little more and make sure that
  ieee80211_node_*() functions aren't called within the TX lock.
  When queueing, I should just push failed frames into a queue and
  when I'm wrapping up the TX code, unlock the TX lock and
  call ieee80211_node_free() on each.

* It would be nice if I could hold the TX lock for the entire
  TX and TX completion, rather than this release/re-acquire behaviour.
  But that requires that I shuffle around the TX completion code
  to handle actual ath_buf free and net80211 callback/free outside
  of the TX lock.  That's one of my next projects.

* the ic_raw_xmit() path doesn't use this yet - so it still has
  sequencing problems with parallel, overlapping calls to the
  data path.  I'll fix this later.

Tested:

* Hostap - AR9280, AR9220
* STA - AR5212, AR9280, AR5416
2013-01-15 18:01:23 +00:00
adrian
0e0daccc72 If we're doing a kickpcu, make sure we flush the whole RX list rather than
stopping after 128 frames.

Whilst here, add in some code that lets me optionally flip back to the
original behaviour of calling ath_startrecv().
2013-01-13 22:41:58 +00:00
adrian
6e25165637 Place-holders for enable/active parameter flags. 2013-01-11 02:25:39 +00:00
adrian
a7817e2da0 Fix format size. 2013-01-08 22:42:15 +00:00
adrian
3ca0100c37 Add support for triggering spectral scan upon a channel reset/change.
This is intended to support reporting FFT results during active channel
scans, for users who would like to fiddle around with writing applications
that do both FFT visualisation _and_ AP scanning.

* add a new ioctl to enable/trigger spectral scan at channel change/reset;
* set do_spectral consistently if it's enabled, so a channel set/reset
  will carry forth the correct PHY error configuration so frames
  are actually received;
* for NICs that don't do spectral scan, don't bother checking the
  spectral scan state on channel change/reset.

Tested:

* AR9280 - STA and scanning;
* AR5416 - STA, ensured that the SS code doesn't panic
2013-01-08 22:15:13 +00:00
adrian
3ffe3ebe2e If spectral scan is enabled, ensure radar report PHY errors are also
enabled.
2013-01-08 22:12:45 +00:00
adrian
8bab531545 For PHY error frames, populate the configured channel flags rather than
based on the received frame.

PHY errors don't have the relevant HT or 40MHz MCS flag set.
2013-01-04 06:28:34 +00:00
adrian
34b50799cd Don't call the spectral methods for NICS that don't implement them. 2013-01-03 19:03:03 +00:00
adrian
5fd18f70ab Add a new (skeleton) spectral mode manager module. 2013-01-02 03:59:02 +00:00
adrian
ab4b4becf0 Fix the short repeat option code to not flip the option to 0 when
we call this w/ NOVAL set.
2013-01-02 03:56:20 +00:00
adrian
8bf1984cd3 Add spectral HAL accessor methods. 2013-01-02 01:40:23 +00:00
adrian
5072c6621d Add a method to explicitly disable radar reporting if required. 2013-01-02 01:36:10 +00:00
adrian
b28c06734d Bring over the basic spectral scan framework code from Qualcomm Atheros.
This includes the HAL routines to setup, enable/activate/disable spectral
scan and configure the relevant registers.

This still requires driver interaction to enable spectral scan reporting.
Specifically:

* call ah_spectralConfigure() to configure and enable spectral scan;
* .. there's currently no way to disable spectral scan... that will have
  to follow.
* call ah_spectralStart() to force start a spectral report;
* call ah_spectralStop() to force stop an active spectral report.

The spectral scan results appear as PHY errors (type 0x5 on the AR9280,
same as radar) but with the spectral scan bit set (0x10 in the last byte
of the frame) identifying it as a spectral report rather than a radar
FFT report.

Caveats:

* It's likely quite difficult to run spectral _and_ radar at the same
  time.  Enabling spectral scan disables the radar thresholds but
  leaves radar enabled.  Thus, the driver (for now) needs to ensure
  that only one or the other is enabled.

* .. it needs testing on HT40 mode.

Tested:

* AR9280 in STA mode, HT/20 only

TODO:

* Test on AR9285, AR9287;
* Test in both HT20 and HT40 modes;
* .. all the driver glue.

Obtained from:	Qualcomm Atheros
2013-01-02 00:38:01 +00:00
adrian
6db6c27043 Add the initial HAL glue for the spectral analysis support.
* Finish adding the HAL capability to announce whether a NIC supports
  spectral scan or not;
* Add spectral scan methods to the HAL structure;
* Add HAL_SPECTRAL_PARAM for configuration of the spectral scan logic.

The capability ID and HAL_SPECTRAL_PARAM struct are from Qualcomm
Atheros.
2012-12-30 06:48:12 +00:00
adrian
5868ddfbc0 Add spectral scan capability. 2012-12-30 06:46:11 +00:00
bapt
b3ae40e771 Fix typo in comment.
Submitted by:	Christoph Mallon <christoph.mallon@gmx.de>
2012-12-28 21:59:47 +00:00