Commit Graph

64 Commits

Author SHA1 Message Date
wpaul
df89b62698 Next step on the road to IRPs: create and use an imitation of the
Windows DRIVER_OBJECT and DEVICE_OBJECT mechanism so that we can
simulate driver stacking.

In Windows, each loaded driver image is attached to a DRIVER_OBJECT
structure. Windows uses the registry to match up a given vendor/device
ID combination with a corresponding DRIVER_OBJECT. When a driver image
is first loaded, its DriverEntry() routine is invoked, which sets up
the AddDevice() function pointer in the DRIVER_OBJECT and creates
a dispatch table (based on IRP major codes). When a Windows bus driver
detects a new device, it creates a Physical Device Object (PDO) for
it. This is a DEVICE_OBJECT structure, with semantics analagous to
that of a device_t in FreeBSD. The Windows PNP manager will invoke
the driver's AddDevice() function and pass it pointers to the DRIVER_OBJECT
and the PDO.

The AddDevice() function then creates a new DRIVER_OBJECT structure of
its own. This is known as the Functional Device Object (FDO) and
corresponds roughly to a private softc instance. The driver uses
IoAttachDeviceToDeviceStack() to add this device object to the
driver stack for this PDO. Subsequent drivers (called filter drivers
in Windows-speak) can be loaded which add themselves to the stack.
When someone issues an IRP to a device, it travel along the stack
passing through several possible filter drivers until it reaches
the functional driver (which actually knows how to talk to the hardware)
at which point it will be completed. This is how Windows achieves
driver layering.

Project Evil now simulates most of this. if_ndis now has a modevent
handler which will use MOD_LOAD and MOD_UNLOAD events to drive the
creation and destruction of DRIVER_OBJECTs. (The load event also
does the relocation/dynalinking of the image.) We don't have a registry,
so the DRIVER_OBJECTS are stored in a linked list for now. Eventually,
the list entry will contain the vendor/device ID list extracted from
the .INF file. When ndis_probe() is called and detectes a supported
device, it will create a PDO for the device instance and attach it
to the DRIVER_OBJECT just as in Windows. ndis_attach() will then call
our NdisAddDevice() handler to create the FDO. The NDIS miniport block
is now a device extension hung off the FDO, just as it is in Windows.
The miniport characteristics table is now an extension hung off the
DRIVER_OBJECT as well (the characteristics are the same for all devices
handled by a given driver, so they don't need to be per-instance.)
We also do an IoAttachDeviceToDeviceStack() to put the FDO on the
stack for the PDO. There are a couple of fake bus drivers created
for the PCI and pccard buses. Eventually, there will be one for USB,
which will actually accept USB IRP.s

Things should still work just as before, only now we do things in
the proper order and maintain the correct framework to support passing
IRPs between drivers.

Various changes:

- corrected the comments about IRQL handling in subr_hal.c to more
  accurately reflect reality
- update ndiscvt to make the drv_data symbol in ndis_driver_data.h a
  global so that if_ndis_pci.o and/or if_ndis_pccard.o can see it.
- Obtain the softc pointer from the miniport block by referencing
  the PDO rather than a private pointer of our own (nmb_ifp is no
  longer used)
- implement IoAttachDeviceToDeviceStack(), IoDetachDevice(),
  IoGetAttachedDevice(), IoAllocateDriverObjectExtension(),
  IoGetDriverObjectExtension(), IoCreateDevice(), IoDeleteDevice(),
  IoAllocateIrp(), IoReuseIrp(), IoMakeAssociatedIrp(), IoFreeIrp(),
  IoInitializeIrp()
- fix a few mistakes in the driver_object and device_object definitions
- add a new module, kern_windrv.c, to handle the driver registration
  and relocation/dynalinkign duties (which don't really belong in
  kern_ndis.c).
- made ndis_block and ndis_chars in the ndis_softc stucture pointers
  and modified all references to it
- fixed NdisMRegisterMiniport() and NdisInitializeWrapper() so they
  work correctly with the new driver_object mechanism
- changed ndis_attach() to call NdisAddDevice() instead of ndis_load_driver()
  (which is now deprecated)
- used ExAllocatePoolWithTag()/ExFreePool() in lookaside list routines
  instead of kludged up alloc/free routines
- added kern_windrv.c to sys/modules/ndis/Makefile and files.i386.
2005-02-08 17:23:25 +00:00
wpaul
361515a412 Begin the first phase of trying to add IRP support (and ultimately
USB device support):

- Convert all of my locally chosen function names to their actual
  Windows equivalents, where applicable. This is a big no-op change
  since it doesn't affect functionality, but it helps avoid a bit
  of confusion (it's now a lot easier to see which functions are
  emulated Windows API routines and which are just locally defined).

- Turn ndis_buffer into an mdl, like it should have been. The structure
  is the same, but now it belongs to the subr_ntoskrnl module.

- Implement a bunch of MDL handling macros from Windows and use them where
  applicable.

- Correct the implementation of IoFreeMdl().

- Properly implement IoAllocateMdl() and MmBuildMdlForNonPagedPool().

- Add the definitions for struct irp and struct driver_object.

- Add IMPORT_FUNC() and IMPORT_FUNC_MAP() macros to make formatting
  the module function tables a little cleaner. (Should also help
  with AMD64 support later on.)

- Fix if_ndis.c to use KeRaiseIrql() and KeLowerIrql() instead of
  the previous calls to hal_raise_irql() and hal_lower_irql() which
  have been renamed.

The function renaming generated a lot of churn here, but there should
be very little operational effect.
2005-01-24 18:18:12 +00:00
wpaul
2fe7b09cb1 Fix a problem reported by Pierre Beyssac. Sometinmes when ndis_get_info()
calls MiniportQueryInformation(), it will return NDIS_STATUS_PENDING.
When this happens, ndis_get_info() will sleep waiting for a completion
event. If two threads call ndis_get_info() and both end up having to
sleep, they will both end up waiting on the same wait channel, which
can cause a panic in sleepq_add() if INVARIANTS are turned on.

Fix this by having ndis_get_info() use a common mutex rather than
using the process mutex with PROC_LOCK(). Also do the same for
ndis_set_info(). Note that Pierre's original patch also made ndis_thsuspend()
use the new mutex, but ndis_thsuspend() shouldn't need this since
it will make each thread that calls it sleep on a unique wait channel.

Also, it occured to me that we probably don't want to enter
MiniportQueryInformation() or MiniportSetInformation() from more
than one thread at any given time, so now we acquire a Windows
spinlock before calling either of them. The Microsoft documentation
says that MiniportQueryInformation() and MiniportSetInformation()
are called at DISPATCH_LEVEL, and previously we would call
KeRaiseIrql() to set the IRQL to DISPATCH_LEVEL before entering
either routine, but this only guarantees mutual exclusion on
uniprocessor machines. To make it SMP safe, we need to use a real
spinlock. For now, I'm abusing the spinlock embedded in the
NDIS_MINIPORT_BLOCK structure for this purpose. (This may need to be
applied to some of the other routines in kern_ndis.c at a later date.)

Export ntoskrnl_init_lock() (KeInitializeSpinlock()) from subr_ntoskrnl.c
since we need to use in in kern_ndis.c, and since it's technically part
of the Windows kernel DDK API along with the other spinlock routines. Use
it in subr_ndis.c too rather than frobbing the spinlock directly.
2005-01-14 22:39:44 +00:00
imp
362fcfc1e2 Start each of the license/copyright comments with /*- 2005-01-05 22:34:37 +00:00
wpaul
9f377407f3 Make the Texas Instruments 802.11g chipset work with the NDISulator.
This was tested with a Netgear WG311v2 802.11b/g PCI card. Things
that were fixed:

- This chip has two memory mapped regions, one at PCIR_BAR(0) and the
  other at PCIR_BAR(1). This is a little different from the other
  chips I've seen with two PCI shared memory regions, since they tend
  to have the second BAR ad PCIR_BAR(2). if_ndis_pci.c tests explicitly
  for PCIR_BAR(2). This has been changed to simply fill in ndis_res_mem
  first and ndis_res_altmem second, if a second shared memory range
  exists. Given that NDIS drivers seem to scan for BARs in ascending
  order, I think this should be ok.

- Fixed the code that tries to process firmware images that have been
  loaded as .ko files. To save a step, I was setting up the address
  mapping in ndis_open_file(), but ndis_map_file() flags pre-existing
  mappings as an error (to avoid duplicate mappings). Changed this so
  that the mapping is now donw in ndis_map_file() as expected.

- Made the typedef for 'driver_entry' explicitly include __stdcall
  to silence gcc warning in ndis_load_driver().

NOTE: the Texas Instruments ACX111 driver needs firmware. With my
card, there were 3 .bin files shipped with the driver. You must
either put these files in /compat/ndis or convert them with
ndiscvt -f and kldload them so the driver can use them. Without
the firmware image, the NIC won't work.
2004-08-16 18:50:20 +00:00
wpaul
f7237cd696 More minor cleanups and one small bug fix:
- In ntoskrnl_var.h, I had defined compat macros for
  ntoskrnl_acquire_spinlock() and ntoskrnl_release_spinlock() but
  never used them. This is fortunate since they were stale. Fix them
  to work properly. (In Windows/x86 KeAcquireSpinLock() is a macro that
  calls KefAcquireSpinLock(), which lives in HAL.dll. To imitate this,
  ntoskrnl_acquire_spinlock() is just a macro that calls hal_lock(),
  which lives in subr_hal.o.)

- Add macros for ntoskrnl_raise_irql() and ntoskrnl_lower_irql() that
  call hal_raise_irql() and hal_lower_irql().

- Use these macros in kern_ndis.c, subr_ndis.c and subr_ntoskrnl.c.

- Along the way, I realised subr_ndis.c:ndis_lock() was not calling
  hal_lock() correctly (it was using the FASTCALL2() wrapper when
  in reality this routine is FASTCALL1()). Using the
  ntoskrnl_acquire_spinlock() fixes this. Not sure if this actually
  caused any bugs since hal_lock() would have just ignored what
  was in %edx, but it was still bogus.

This hides many of the uses of the FASTCALLx() macros which makes the
code a little cleaner. Should not have any effect on generated object
code, other than the one fix in ndis_lock().
2004-08-04 18:22:50 +00:00
wpaul
b9b3caf965 Big mess 'o changes:
- Give ndiscvt(8) the ability to process a .SYS file directly into
  a .o file so that we don't have to emit big messy char arrays into
  the ndis_driver_data.h file. This behavior is currently optional, but
  may become the default some day.

- Give ndiscvt(8) the ability to turn arbitrary files into .ko files
  so that they can be pre-loaded or kldloaded. (Both this and the
  previous change involve using objcopy(1)).

- Give NdisOpenFile() the ability to 'read' files out of kernel memory
  that have been kldloaded or pre-loaded, and disallow the use of
  the normal vn_open() file opening method during bootstrap (when no
  filesystems have been mounted yet). Some people have reported that
  kldloading if_ndis.ko works fine when the system is running multiuser
  but causes a panic when the modile is pre-loaded by /boot/loader. This
  happens with drivers that need to use NdisOpenFile() to access
  external files (i.e. firmware images). NdisOpenFile() won't work
  during kernel bootstrapping because no filesystems have been mounted.
  To get around this, you can now do the following:

        o Say you have a firmware file called firmware.img
        o Do: ndiscvt -f firmware.img -- this creates firmware.img.ko
        o Put the firmware.img.ko in /boot/kernel
        o add firmware.img_load="YES" in /boot/loader.conf
        o add if_ndis_load="YES" and ndis_load="YES" as well

  Now the loader will suck the additional file into memory as a .ko. The
  phony .ko has two symbols in it: filename_start and filename_end, which
  are generated by objcopy(1). ndis_open_file() will traverse each module
  in the module list looking for these symbols and, if it finds them, it'll
  use them to generate the file mapping address and length values that
  the caller of NdisOpenFile() wants.

  As a bonus, this will even work if the file has been statically linked
  into the kernel itself, since the "kernel" module is searched too.
  (ndiscvt(8) will generate both filename.o and filename.ko for you).

- Modify the mechanism used to provide make-pretend FASTCALL support.
  Rather than using inline assembly to yank the first two arguments
  out of %ecx and %edx, we now use the __regparm__(3) attribute (and
  the __stdcall__ attribute) and use some macro magic to re-order
  the arguments and provide dummy arguments as needed so that the
  arguments passed in registers end up in the right place. Change
  taken from DragonflyBSD version of the NDISulator.
2004-08-01 20:04:31 +00:00
wpaul
16416501a9 Make NdisReadPcmciaAttributeMemory() and NdisWritePcmciaAttributeMemory()
actually work.

Make the PCI and PCCARD attachments provide a bus_get_resource_list()
method so that resource listing for PCCARD works. PCCARD does not
have a bus_get_resource_list() method (yet), so I faked up the
resource list management in if_ndis_pccard.c, and added
bus_get_resource_list() methods to both if_ndis_pccard.c and if_ndis_pci.c.
The one in the PCI attechment just hands off to the PCI bus code.
The difference is transparent to the NDIS resource handler code.

Fixed ndis_open_file() so that opening files which live on NFS
filesystems work: pass an actual ucred structure to VOP_GETATTR()
(NFS explodes if the ucred structure is NOCRED).

Make NdisMMapIoSpace() handle mapping of PCMCIA attribute memory
resources correctly.

Turn subr_ndis.c:my_strcasecmp() into ndis_strcasecmp() and export
it so that if_ndis_pccard.c can use it, and junk the other copy
of my_strcasecmp() from if_ndis_pccard.c.
2004-07-11 00:19:30 +00:00
wpaul
923c7351dd Add another 5.2.1 source compatibility tweak: acquire Giant before calling
kthread_exit() if FreeBSD_version is old enough.
2004-06-07 01:22:48 +00:00
des
95045d6bb3 Take advantage of the dev sysctl tree.
Approved by:	wpaul
2004-06-04 22:24:46 +00:00
wpaul
a4fd26fba2 Explicitly #include <sys/module.h> instead of depending on <sys/kernel.h>
to do it for us.
2004-06-01 23:24:17 +00:00
wpaul
6bc1da1c05 Ok, _really_ fix the Intel 2100B Centrino deadlock problems this time.
(I hope.)

My original instinct to make ndis_return_packet() asynchronous was correct.
Making ndis_rxeof() submit packets to the stack asynchronously fixes
one recursive spinlock acquisition, but it's also possible for it to
happen via the ndis_txeof() path too. So:

- In if_ndis.c, revert ndis_rxeof() to its old behavior (and don't bother
  putting ndis_rxeof_serial() back since we don't need it anymore).

- In kern_ndis.c, make ndis_return_packet() submit the call to the
  MiniportReturnPacket() function to the "ndis swi" thread so that
  it always happens in another context no matter who calls it.
2004-04-22 07:08:39 +00:00
wpaul
1ea56deba6 - Use memory barrier with atomic operations in ntoskrnl_lock_dpc() and
ntoskrnl_unlocl_dpc().
- hal_raise_irql(), hal_lower_irql() and hal_irql() didn't work right
  on SMP (priority inheritance makes things... interesting). For now,
  use only two states: DISPATCH_LEVEL (PI_REALTIME) and PASSIVE_LEVEL
  (everything else). Tested on a dual PIII box.
- Use ndis_thsuspend() in ndis_sleep() instead of tsleep(). (I added
  ndis_thsuspend() and ndis_thresume() to replace kthread_suspend()
  and kthread_resume(); the former will preserve a thread's priority
  when it wakes up, the latter will not.)
- Change use of tsleep() in ndis_stop_thread() to prevent priority
  change on wakeup.
2004-04-16 00:04:28 +00:00
wpaul
9765d24df6 Continue my efforts to imitate Windows as closely as possible by
attempting to duplicate Windows spinlocks. Windows spinlocks differ
from FreeBSD spinlocks in the way they block preemption. FreeBSD
spinlocks use critical_enter(), which masks off _all_ interrupts.
This prevents any other threads from being scheduled, but it also
prevents ISRs from running. In Windows, preemption is achieved by
raising the processor IRQL to DISPATCH_LEVEL, which prevents other
threads from preempting you, but does _not_ prevent device ISRs
from running. (This is essentially what Solaris calls dispatcher
locks.) The Windows spinlock itself (kspin_lock) is just an integer
value which is atomically set when you acquire the lock and atomically
cleared when you release it.

FreeBSD doesn't have IRQ levels, so we have to cheat a little by
using thread priorities: normal thread priority is PASSIVE_LEVEL,
lowest interrupt thread priority is DISPATCH_LEVEL, highest thread
priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is
HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL
matter to us. The immediate benefit of all this is that I no
longer have to rely on a mutex pool.

Now, I'm sure many people will be seized by the urge to criticize
me for doing an end run around our own spinlock implementation, but
it makes more sense to do it this way. Well, it does to me anyway.

Overview of the changes:

- Properly implement hal_lock(), hal_unlock(), hal_irql(),
  hal_raise_irql() and hal_lower_irql() so that they more closely
  resemble their Windows counterparts. The IRQL is determined by
  thread priority.

- Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do
  in Windows, which is to atomically set/clear the lock value. These
  routines are designed to be called from DISPATCH_LEVEL, and are
  actually half of the work involved in acquiring/releasing spinlocks.

- Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers
  that allow us to call a _fastcall function in spite of the fact
  that our version of gcc doesn't support __attribute__((__fastcall__))
  yet. The macros take 1, 2 or 3 arguments, respectively. We need
  to call hal_lock(), hal_unlock() etc... ourselves, but can't really
  invoke the function directly. I could have just made the underlying
  functions native routines and put _fastcall wrappers around them for
  the benefit of Windows binaries, but that would create needless bloat.

- Remove ndis_mtxpool and all references to it. We don't need it
  anymore.

- Re-implement the NdisSpinLock routines so that they use hal_lock()
  and friends like they do in Windows.

- Use the new spinlock methods for handling lookaside lists and
  linked list updates in place of the mutex locks that were there
  before.

- Remove mutex locking from ndis_isr() and ndis_intrhand() since they're
  already called with ndis_intrmtx held in if_ndis.c.

- Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif.
  It turns out there are some drivers which stupidly free the memory
  in which their spinlocks reside before calling ndis_destroy_lock()
  on them (touch-after-free bug). The ADMtek wireless driver
  is guilty of this faux pas. (Why this doesn't clobber Windows I
  have no idea.)

- Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into
  real functions instead of aliasing them to NdisAcaquireSpinLock()
  and NdisReleaseSpinLock(). The Dpr routines use
  KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(),
  which acquires the lock without twiddling the IRQL.

- In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some
  drivers may call the status/status done callbacks as the result of
  setting an OID: ndis_80211_getstate() gets OIDs, which means we
  might cause the driver to recursively access some of its internal
  structures unexpectedly. The ndis_ticktask() routine will call
  ndis_80211_getstate() for us eventually anyway.

- Fix the channel setting code a little in ndis_80211_setstate(),
  and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft
  spec says you're not supposed to twiddle the channel in BSS mode;
  I may need to enforce this later.) This fixes the problems I was
  having with the ADMtek adm8211 driver: we were setting the channel
  to a non-standard default, which would cause it to fail to associate
  in BSS mode.

- Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when
  calling certain miniport routines, per the Microsoft documentation.

I think that's everything. Hopefully, other than fixing the ADMtek
driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
wpaul
52d50449a1 In ndis_convert_res(), initialize the head of our temporary list
before calling BUS_GET_RESOURCE_LIST(). Previously, the list head would
only be initialized if BUS_GET_RESOURCE_LIST() succeeded; it needs to
be initialized unconditionally so that the list cleanup code won't
trip over potential stack garbage.
2004-04-07 17:02:55 +00:00
wpaul
e8bf917ce6 - The MiniportReset() function can return NDIS_STATUS_PENDING, in which
case we should wait for the resetdone handler to be called before
  returning.

- When providing resources via ndis_query_resources(), uses the
  computed rsclen when using bcopy() to copy out the resource data
  rather than the caller-supplied buffer length.

- Avoid using ndis_reset_nic() in if_ndis.c unless we really need
  to reset the NIC because of a problem.

- Allow interrupts to be fielded during ndis_attach(), at least
  as far as allowing ndis_isr() and ndis_intrhand() to run.

- Use ndis_80211_rates_ex when probing for supported rates. Technically,
  this isn't supposed to work since, although Microsoft added the extended
  rate structure with the NDIS 5.1 update, the spec still says that
  the OID_802_11_SUPPORTED_RATES OID uses ndis_80211_rates. In spite of
  this, it appears some drivers use it anyway.

- When adding in our guessed rates, check to see if they already exist
  so that we avoid any duplicates.

- Add a printf() to ndis_open_file() that alerts the user when a
  driver attempts to open a file under /compat/ndis.

With these changes, I can get the driver for the SMC 2802W 54g PCI
card to load and run. This board uses a Prism54G chip. Note that in
order for this driver to work, you must place the supplied smc2802w.arm
firmware image under /compat/ndis. (The firmware is not resident on
the device.)

Note that this should also allow the 3Com 3CRWE154G72 card to work
as well; as far as I can tell, these cards also use a Prism54G chip.
2004-04-05 08:26:52 +00:00
wpaul
163b236504 Add missing cprd_flags member to partial resource structure in
resource_var.h.

In kern_ndis.c:ndis_convert_res(), fill in the cprd_flags and
cprd_sharedisp fields as best we can.

In if_ndis.c:ndis_setmulti(), don't bother updating the multicast
filter if our multicast address list is empty.

Add some missing updates to ndis_var.h and ntoskrnl_var.h that I
forgot to check in when I added the KeDpc stuff.
2004-03-29 02:15:29 +00:00
wpaul
2c5e07e637 - In subr_ndis.c:ndis_init_event(), initialize events as notification
objects rather than synchronization objects. When a sync object is
  signaled, only the first thread waiting on it is woken up, and then
  it's automatically reset to the not-signaled state. When a
  notification object is signaled, all threads waiting on it will
  be woken up, and it remains in the signaled state until someone
  resets it manually. We want the latter behavior for NDIS events.

- In kern_ndis.c:ndis_convert_res(), we have to create a temporary
  copy of the list returned by BUS_GET_RESOURCE_LIST(). When the PCI
  bus code probes resources for a given device, it enters them into
  a singly linked list, head first. The result is that traversing
  this list gives you the resources in reverse order. This means when
  we create the Windows resource list, it will be in reverse order too.
  Unfortunately, this can hose drivers for devices with multiple I/O
  ranges of the same type, like, say, two memory mapped I/O regions (one
  for registers, one to map the NVRAM/bootrom/whatever). Some drivers
  test the range size to figure out which region is which, but others
  just assume that the resources will be listed in ascending order from
  lowest numbered BAR to highest. Reversing the order means such drivers
  will choose the wrong resource as their I/O register range.

  Since we can't traverse the resource SLIST backwards, we have to
  make a temporary copy of the list in the right order and then build
  the Windows resource list from that. I suppose we could just fix
  the PCI bus code to use a TAILQ instead, but then I'd have to track
  down all the consumers of the BUS_GET_RESOURCE_LIST() and fix them
  too.
2004-03-25 18:31:52 +00:00
wpaul
57efe0d11e - In kern_ndis.c, implement ndis_unsched(), the complement to ndis_sched(),
which pulls a job off a thread work queue (assuming it hasn't run yet).
  This is needed for KeRemoveQueueDpc().

- In subr_ntoskrnl.c, implement KeInsertQueueDpc() and KeRemoveQueueDpc(),
  to go with KeInitializeDpc() to round out the API. Also change the
  KeTimer implementation to use this API instead of the private
  timer callout scheduler. Functionality of the timer API remains
  unchanged, but we get a couple new Windows kernel API routines and
  more closely imitate the way thing works in Windows. (As of yet
  I haven't encountered any drivers that use KeInsertQueueDpc() or
  KeRemoveQueueDpc(), but it doesn't hurt to have them.)
2004-03-25 08:23:08 +00:00
wpaul
531ac9bc54 I'm a dumbass: the test in the MOD_SHUTDOWN case in ndis_modevent()
that checks to see if any devices are still in the devlist was reversed.
2004-03-22 18:34:37 +00:00
wpaul
e7b058478d The Intel 2200BG NDIS driver does an alloca() of about 5000 bytes
when it associates with a net. Because FreeBSD's kstack size is only
2 pages by default, this blows the stack and causes a double fault.

To deal with this, we now create all our kthreads with 8 stack pages.
Also, we now run all timer callouts in the ndis swi thread (since
they would otherwise run in the clock ithread, whose stack is too
small). It happens that the alloca() in this case was occuring within
the interrupt handler, which was already running in the ndis swi
thread, but I want to deal with the callouts too just to be extra
safe.

NOTE: this will only work if you update vm_machdep.c with the change
I just committed. If you don't include this fix, setting the number
of stack pages with kthread_create() has essentially no effect.
2004-03-22 00:41:41 +00:00
wpaul
8feaa1f450 - Rewrite the timer and event API routines in subr_ndis.c so that they
are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just
  as it is in Windows. This reduces code duplication and more closely
  imitates the way things are done in Windows.

- Modify ndis_encode_parm() to deal with the case where we have
  a registry key expressed as a hex value ("0x1") which is being
  read via NdisReadConfiguration() as an int. Previously, we tried
  to decode things like "0x1" with strtol() using a base of 10, which
  would always yield 0. This is what was causing problems with the
  Intel 2200BG Centrino 802.11g driver: the .inf file that comes
  with it has a key called RadioEnable with a value of 0x1. We
  incorrectly decoded this value to '0' when it was queried, hence
  the driver thought we wanted the radio turned off.

- In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO,
  but NDIS_80211_AUTHMODE_SHARED may not be right in some cases,
  so for now always use NDIS_80211_AUTHMODE_OPEN.

NOTE: There is still one problem with the Intel 2200BG driver: it
happens that the kernel stack in Windows is larger than the kernel
stack in FreeBSD. The 2200BG driver sometimes eats up more than 2
pages of stack space, which can lead to a double fault panic.
For the moment, I got things to work by adding the following to
my kernel config file:

options         KSTACK_PAGES=8

I'm pretty sure 8 is too big; I just picked this value out of a hat
as a test, and it happened to work, so I left it. 4 pages might be
enough. Unfortunately, I don't think you can dynamically give a
thread a larger stack, so I'm not sure how to handle this short of
putting a note in the man page about it and dealing with the flood
of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
wpaul
74a2897640 Fix mind-o: sanity check in ndis_disable_ndis() is not sane. 2004-03-11 09:50:00 +00:00
wpaul
7a42ffc382 Add preliminary support for PCMCIA devices in addition to PCI/cardbus.
if_ndis.c has been split into if_ndis_pci.c and if_ndis_pccard.c.
The ndiscvt(8) utility should be able to parse device info for PCMCIA
devices now. The ndis_alloc_amem() has moved from kern_ndis.c to
if_ndis_pccard.c so that kern_ndis.c no longer depends on pccard.

NOTE: this stuff is not guaranteed to work 100% correctly yet. So
far I have been able to load/init my PCMCIA Cisco Aironet 340 card,
but it crashes in the interrupt handler. The existing support for
PCI/cardbus devices should still work as before.
2004-03-07 02:49:06 +00:00
jhb
2642ed4029 kthread_exit() no longer requires Giant, so don't force callers to acquire
Giant just to call kthread_exit().

Requested by:	many
2004-03-05 22:42:17 +00:00
wpaul
a3ef672562 Fix a problem with the way we schedule work on the NDIS worker threads.
The Am1771 driver will sometimes do the following:

- Some thread-> NdisScheduleWorkItem(some work)
- Worker thread -> do some work, KeWaitForSingleObject(some event)
- Some other thread -> NdisScheduleWorkItem(some other work)

When the second call to NdisScheduleWorkItem() occurs, the NDIS worker
thread (in our case ndis taskqueue) is suspended in KeWaitForSingleObject()
and waiting for an event to be signaled. This is different from when
the worker thread is idle and waiting on NdisScheduleWorkItem() to
send it more jobs. However, the ndis_sched() function in kern_ndis.c
always calls kthread_resume() when queueing a new job. Normally this
would be ok, but here this causes KeWaitForSingleObject() to return
prematurely, which is not what we want.

To fix this, the NDIS threads created by kern_ndis.c maintain a state
variable to indicate whether they are running (scanning the job list
and executing jobs) or sleeping (blocked on kthread_suspend() in
ndis_runq()), and ndis_sched() will only call kthread_resume() if
the thread is in the sleeping state.

Note that we can't just check to see if the thread is on the run queue:
in both cases, the thread is sleeping, but it's sleeping for different
reasons.

This stops the Am1771 driver from emitting various "NDIS ERROR" messages
and fixes some cases where it crashes.
2004-02-14 20:57:32 +00:00
wpaul
04e0838d2b Add yet more bulletproofing. This is to guard against the case that
ndis_init_nic() works one during attach, but fails later. Many things
will blow up if ndis_init_nic() fails and we aren't careful.
2004-02-11 21:53:40 +00:00
wpaul
5280743f49 Add some bulletproofing: don't allow the ndis_get_info() or ndis_set_info()
routines to do anything except return error if the miniport adapter context
is not set (meaning we either having init'ed the driver yet, or the
initialization failed).

Also, be sure to NULL out the adapter context along with the
miniport characteristics pointers if calling the MiniportInitialize()
method fails.
2004-02-10 23:01:53 +00:00
wpaul
fe7c8eefc3 Add a whole bunch of new stuff to make the driver for the AMD Am1771/Am1772
802.11b chipset work. This chip is present on the SMC2602W version 3
NIC, which is what was used for testing. This driver creates kernel
threads (12 of them!) for various purposes, and required the following
routines:

PsCreateSystemThread()
PsTerminateSystemThread()
KeInitializeEvent()
KeSetEvent()
KeResetEvent()
KeInitializeMutex()
KeReleaseMutex()
KeWaitForSingleObject()
KeWaitForMultipleObjects()
IoGetDeviceProperty()

and several more. Also, this driver abuses the fact that NDIS events
and timers are actually Windows events and timers, and uses NDIS events
with KeWaitForSingleObject(). The NDIS event routines have been rewritten
to interface with the ntoskrnl module. Many routines with incorrect
prototypes have been cleaned up.

Also, this driver puts jobs on the NDIS taskqueue (via NdisScheduleWorkItem())
which block on events, and this interferes with the operation of
NdisMAllocateSharedMemoryAsync(), which was also being put on the
NDIS taskqueue. To avoid the deadlock, NdisMAllocateSharedMemoryAsync()
is now performed in the NDIS SWI thread instead.

There's still room for some cleanups here, and I really should implement
KeInitializeTimer() and friends.
2004-02-07 06:44:13 +00:00
wpaul
cad1573762 Implement support for single packet sends. The Intel Centrino driver
that Asus provides on its CDs has both a MiniportSend() routine
and a MiniportSendPackets() function. The Microsoft NDIS docs say
that if a driver has both, only the MiniportSendPackets() routine
will be used. Although I think I implemented the support correctly,
calling the MiniportSend() routine seems to result in no packets going
out on the air, even though no error status is returned. The
MiniportSendPackets() function does work though, so at least in
this case it doesn't matter.

In if_ndis.c:ndis_getstate_80211(), if ndis_get_assoc() returns
an error, don't bother trying to obtain any other state since the
calls may fail, or worse cause the underlying driver to crash.

(The above two changes make the Asus-supplied Centrino work.)

Also, when calling the OID_802_11_CONFIGURATION OID, remember
to initialize the structure lengths correctly.

In subr_ndis.c:ndis_open_file(), set the current working directory
to rootvnode if we're in a thread that doesn't have a current
working directory set.
2004-02-03 07:39:23 +00:00
wpaul
3014162ffa Reorganize the timer code a little and implement NdisInitializeTimer()
and NdisCancelTimer(). NdisInitializeTimer() doesn't accept an NDIS
miniport context argument, so we have to derive it from the timer
function context (which is supposed to be the adapter private context).
NdisCancelTimer is now an alias for NdisMCancelTimer().

Also add stubs for NdisMRegisterDevice() and NdisMDeregisterDevice().
These are no-ops for now, but will likely get fleshed in once I start
working on the Am1771/Am1772 wireless driver.
2004-01-26 21:21:53 +00:00
wpaul
d44bf296d3 Avoid possible panic on shutdown: if there are still some devices
attached when shutting down, kill our kthreads, but don't destroy
the mutex pool and uma zone resources since the driver shutdown
routine may need them later.
2004-01-26 08:36:18 +00:00
wpaul
8a1da553d8 Make sure to trap failures correctly in ndis_get_info() and ndis_set_info(). 2004-01-21 19:14:52 +00:00
wpaul
47bc79bfe6 Eliminate some code duplication: since ndis_runq() and ndis_intq() were
basically the same function, compact them into a single loop which can
be used for both threads.
2004-01-19 18:56:31 +00:00
wpaul
2bcdd99de4 Convert from using taskqueue_swi to using private kernel threads. The
problem with using taskqueue_swi is that some of the things we defer
into threads might block for up to several seconds. This is an unfriendly
thing to do to taskqueue_swi, since it is assumed the taskqueue threads
will execute fairly quickly once a task is submitted. Reorganized the
locking in if_ndis.c in the process.

Cleaned up ndis_write_cfg() and ndis_decode_parm() a little.
2004-01-18 22:57:11 +00:00
obrien
db0a9fc4de AMD64 has a single MS-Win calling convention, so provide an empty __stdcall.
Centralize the definition to make it easier to change.
2004-01-13 22:49:45 +00:00
wpaul
b2122ad887 Ugh. I am not having a good day. Remove debugging #ifdef that accidentally
crept into the last commit.
2004-01-12 21:40:05 +00:00
wpaul
377a4756cd In if_ndis.c:ndis_intr(), be a bit more intelligent about squelching
unexpected interrupts. If an interrupt is triggered and we're not
finished initializing yet, bail. If we have finished initializing,
but IFF_UP isn't set yet, drain the interrupt with ndis_intr() or
ndis_disable_intr() as appropriate, then return _without_ scheduling
ndis_intrtask().

In kern_ndis.c:ndis_load_driver() only relocate/dynalink a given driver
image once. Trying to relocate an image that's already been relocated
will trash the image. We poison a part of the image header that we
don't otherwise need with a magic value to indicate it's already been
fixed up. This fixes the case where there are multiple units of the
same kind of device.
2004-01-12 21:00:48 +00:00
wpaul
fcdf650572 Merge in some changes submitted by Brian Feldman. Among other things,
these add support for listing BSSIDs via wicontrol -l. I added code
to call OID_802_11_BSSID_LIST_SCAN to allow scanning for any nearby
wirelsss nets.

Convert from using individual mutexes to a mutex pool, created in
subr_ndis.c. This deals with the problem of drivers creating locks
in their DriverEntry() routines which might get trashed later.

Put some messages under IFF_DEBUG.
2004-01-12 03:49:20 +00:00
wpaul
1d43d52f79 The private data section of ndis_packets has a 'packet flags' byte
which has two important flags in it: the 'allocated by NDIS' flag
and the 'media specific info present' flag. There are two Windows macros
for getting/setting media specific info fields within the ndis_packet
structure which can behave improperly if these flags are not initialized
correctly when a packet is allocated. It seems the correct thing
to do is always set the NDIS_PACKET_ALLOCATED_BY_NDIS flag on
all newly allocated packets.

This fixes the crashes with the Intel Centrino wireless driver.
My sample card now seems to work correctly.

Also, fix a potential LOR involving ndis_txeof() in if_ndis.c.
2004-01-09 06:53:49 +00:00
wpaul
f9d080ddf9 Implement NdisOpenFile()/NdisCloseFile()/NdisMapFile()/NdisUnmapFile().
By default, we search for files in /compat/ndis. This can be changed with
a systcl. These routines are used by some drivers which need to download
firmware or microcode into their respective devices during initialization.

Also, remove extraneous newlines from the 'built-in' sysctl/registry
variables.
2004-01-09 03:57:00 +00:00
wpaul
32da689fb4 In subr_ndis.c: correct ndis_interlock_inc() and ndis_interlock_dec()
so we increment the right thing. (All work and not enough parens
make Bill something something...) This makes the RealTek 8139C+
driver work correctly.

Also fix some mtx_lock_spin()s and mtx_unlock_spin()s that should
have been just plain mtx_lock()s and mtx_unlock()s.

In kern_ndis.c: remove duplicate code from ndis_send_packets() and
just call the senddone handler (ndis_txeof()).
2004-01-07 06:15:56 +00:00
wpaul
7452e76589 - Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
  This allows us to print error messages in ndis_syslog().

- Correct the implementation of InterlockedIncrement() and
  InterlockedDecrement() -- they return uint32_t, not void.

- Correct the declarations of the 64-bit arithmetic shift
  routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
  do not follow the _stdcall convention: instead, they appear
  to be __attribute__((regparm(3)).

- Change the implementation of KeInitializeSpinLock(). There is
  no complementary KeFreeSpinLock() function, so creating a new
  mutex on each call to KeInitializeSpinLock() leaks resources
  when a driver is unloaded. For now, KeInitializeSpinLock()
  returns a handle to the ntoskrnl interlock mutex.

- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
  routines if they exist. I'm not sure if I'm doing this right
  yet, but at the very least this shouldn't break any currently
  working drivers, and it makes the Intel PRO/1000 driver work.

- In ndis_register_intr(), save some state that might be needed
  later, and save a pointer to the driver's interrupt structure
  in the ndis_miniport_block.

- Save a pointer to the driver image for use by ndis_syslog()
  when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
wpaul
389bb3f274 Modify if_ndis.c so that the MiniportISR function runs in ndis_intr()
and MiniportHandleInterrupt() is fired off later via a task queue in
ndis_intrtask(). This more accurately follows the NDIS interrupt handling
model, where the ISR does a minimal amount of work in interrupt context
and the handler is defered and run at a lower priority.

Create a separate ndis_intrmtx mutex just for the guarding the ISR.

Modify NdisSynchronizeWithInterrupt() to aquire the ndis_intrmtx
mutex before invoking the synchronized procedure. (The purpose of
this function is to provide mutual exclusion for code that shares
variables with the ISR.)

Modify NdisMRegisterInterrupt() to save a pointer to the miniport
block in the ndis_miniport_interrupt structure so that
NdisSynchronizeWithInterrupt() can grab it later and derive
ndis_intrmtx from it.
2004-01-04 21:22:25 +00:00
wpaul
1319a94ada Implement NdisScheduleWorkItem() and RtlCompareMemory().
Also, call the libinit and libfini routines from the modevent
handler in kern_ndis.c. This simplifies the initialization a little.
2004-01-04 07:47:33 +00:00
wpaul
79a95fe15c In if_ndis.c:ndis_attach(), temporarily set the IFF_UP flag while
calling the haltfunc. If an interrupt is triggered by the init
or halt func, the IFF_UP flag must be set in order for us to be able
to service it.

In kern_ndis.c: implement a handler for NdisMSendResourcesAvailable()
(currently does nothing since we don't really need it).

In subr_ndis.c:
	- Correct ndis_init_string() and ndis_unicode_to_ansi(),
	  which were both horribly broken.
        - Implement NdisImmediateReadPciSlotInformation() and
	  NdisImmediateWritePciSlotInformation().
	- Implement NdisBufferLength().
	- Work around my first confirmed NDIS driver bug.
	  The SMC 9462 gigE driver (natsemi 83820-based copper)
	  incorrectly creates a spinlock in its DriverEntry()
	  routine and then destroys it in its MiniportHalt()
	  handler. This is wrong: spinlocks should be created
	  in MiniportInit(). In a Windows environment, this is
	  often not a problem because DriverEntry()/MiniportInit()
	  are called once when the system boots and MiniportHalt()
	  or the shutdown handler is called when the system halts.

With this stuff in place, this driver now seems to work:

ndis0: <SMC EZ Card 1000> port 0xe000-0xe0ff mem 0xda000000-0xda000fff irq 10 at device 9.0 on pci0
ndis0: assign PCI resources...
ndis_open_file("FLASH9.hex", 18446744073709551615)
ndis0: Ethernet address: 00:04:e2:0e:d3:f0
2004-01-03 13:20:30 +00:00
wpaul
29f6674338 Clean up ndiscvt a bit (leaving out the -i flag didn't work) and add
copyrights to the inf parser files.

Add a -n flag to ndiscvt to allow the user to override the default
device name of NDIS devices. Instead of "ndis0, ndis1, etc..."
you can have "foo0, foo1, etc..." This allows you to have more than
one kind of NDIS device in the kernel at the same time.

Convert from printf() to device_printf() in if_ndis.c, kern_ndis.c
and subr_ndis.c.

Create UMA zones for ndis_packet and ndis_buffer structs allocated
on transmit. The zones are created and destroyed in the modevent
handler in kern_ndis.c.

printf() and UMA changes submitted by green@freebsd.org
2004-01-02 04:31:06 +00:00
wpaul
bd547ce3e3 - Add new 802.11 OID information obtained from NDIS 5.1 update to
ndis_var.h
- In kern_ndis.c:ndis_send_packets(), avoid dereferencing NULL pointers
  created when the driver's send routine immediately calls the txeof
  handler (which releases the packets for us anyway).
- In if_ndis.c:ndis_80211_setstate(), implement WEP support.
2003-12-30 21:33:26 +00:00
wpaul
5319092108 Rework resource allocation. Replace the "feel around like a blind man"
method with something a little more intelligent: use BUS_GET_RESOURCE_LIST()
to run through all resources allocated to us and map them as needed. This
way we know exactly what resources need to be mapped and what their RIDs
are without having to guess. This simplifies both ndis_attach() and
ndis_convert_res(), and eliminates the unfriendly "ndisX: couldn't map
<foo>" messages that are sometimes emitted during driver load.
2003-12-29 23:51:59 +00:00
wpaul
57cde0f9a7 Attempt to handle the status field in the ndis_packet oob area correctly.
For received packets, an status of NDIS_STATUS_RESOURCES means we need
to copy the packet data and return the ndis_packet to the driver immediatel.
NDIS_STATUS_SUCCESS means we get to hold onto the packet, but we have
to set the status to NDIS_STATUS_PENDING so the driver knows we're
going to hang onto it for a while.

For transmit packets, NDIS_STATUS_PENDING means the driver will
asynchronously return the packet to us via the ndis_txeof() routine,
and NDIS_STATUS_SUCCESS means the driver sent the frame, and NDIS
(i.e. the OS) retains ownership of the packet and can free it
right away.
2003-12-26 07:01:05 +00:00