908 Commits

Author SHA1 Message Date
Jake Burkholder
d5a08a6065 Implement a unified run queue and adjust priority levels accordingly.
- All processes go into the same array of queues, with different
  scheduling classes using different portions of the array.  This
  allows user processes to have their priorities propogated up into
  interrupt thread range if need be.
- I chose 64 run queues as an arbitrary number that is greater than
  32.  We used to have 4 separate arrays of 32 queues each, so this
  may not be optimal.  The new run queue code was written with this
  in mind; changing the number of run queues only requires changing
  constants in runq.h and adjusting the priority levels.
- The new run queue code takes the run queue as a parameter.  This
  is intended to be used to create per-cpu run queues.  Implement
  wrappers for compatibility with the old interface which pass in
  the global run queue structure.
- Group the priority level, user priority, native priority (before
  propogation) and the scheduling class into a struct priority.
- Change any hard coded priority levels that I found to use
  symbolic constants (TTIPRI and TTOPRI).
- Remove the curpriority global variable and use that of curproc.
  This was used to detect when a process' priority had lowered and
  it should yield.  We now effectively yield on every interrupt.
- Activate propogate_priority().  It should now have the desired
  effect without needing to also propogate the scheduling class.
- Temporarily comment out the call to vm_page_zero_idle() in the
  idle loop.  It interfered with propogate_priority() because
  the idle process needed to do a non-blocking acquire of Giant
  and then other processes would try to propogate their priority
  onto it.  The idle process should not do anything except idle.
  vm_page_zero_idle() will return in the form of an idle priority
  kernel thread which is woken up at apprioriate times by the vm
  system.
- Update struct kinfo_proc to the new priority interface.  Deliberately
  change its size by adjusting the spare fields.  It remained the same
  size, but the layout has changed, so userland processes that use it
  would parse the data incorrectly.  The size constraint should really
  be changed to an arbitrary version number.  Also add a debug.sizeof
  sysctl node for struct kinfo_proc.
2001-02-12 00:20:08 +00:00
Bosko Milekic
9ed346bab0 Change and clean the mutex lock interface.
mtx_enter(lock, type) becomes:

mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)

similarily, for releasing a lock, we now have:

mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.

The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.

Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:

MTX_QUIET and MTX_NOSWITCH

The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:

mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.

Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.

Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.

Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.

Finally, caught up to the interface changes in all sys code.

Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
Poul-Henning Kamp
37d4006626 Another round of the <sys/queue.h> FOREACH transmogriffer.
Created with:   sed(1)
Reviewed by:    md5(1)
2001-02-04 16:08:18 +00:00
Poul-Henning Kamp
fc2ffbe604 Mechanical change to use <sys/queue.h> macro API instead of
fondling implementation details.

Created with: sed(1)
Reviewed by: md5(1)
2001-02-04 13:13:25 +00:00
Poul-Henning Kamp
ef9e85abba Use <sys/queue.h> macro API. 2001-02-04 12:37:48 +00:00
Poul-Henning Kamp
b99cfaf32c Remove a DIAGNOSTIC check which belongs in <sys/queue.h> if anyplace at all. 2001-02-04 11:53:51 +00:00
Ian Dowse
5d1731a783 Extend the sanity checks in ufs_lookup to ensure that each directory
entry fits within its DIRBLKSIZ block. The surrounding code is
extremely fragile with respect to corruption of the directory entry
'd_reclen' field; if directory corruption occurs, it can blindly
scan forward beyond the end of the filesystem block. Usually this
results in a 'fault on nofault entry' panic.

Directory corruption is now much more likely to be detected, resulting
in a 'ufs_dirbad' panic. If the filesystem is read-only, it will
simply print a warning message, and skip the corrupted block.

Reviewed by:	mckusick
2001-02-04 01:52:11 +00:00
Ian Dowse
f434e08437 Use the correct flags field when checking for a read-only filesystem
in ufs_dirbad(). The mnt_stat.f_flags field is only updated by the
syscalls *statfs and getfsstat, so mnt_flag should be used instead.

This only affects whether or not a panic is generated on detection of
certain types of directory corruption.

Reviewed by:	mckusick
2001-02-03 21:25:32 +00:00
Matthew Dillon
f8e071a1eb Fix a race between the syncer and umount. When you umount a softupdates
filesystem softdep_process_worklist() is called in a loop until it indicates
that no dependancies remain, but the determination of that fact depends on
there only being one softdep_process_worklist() instance running.  It was
possible for the syncer to also be running softdep_process_worklist()
and the pre-existing checks in the code to prevent this were not sufficient
to prevent the race.  This patch solves the problem.

Approved-by: mckusick
2001-01-30 06:31:59 +00:00
Jason Evans
1b367556b5 Convert all simplelocks to mutexes and remove the simplelock implementations. 2001-01-24 12:35:55 +00:00
Ian Dowse
f55ff3f3ef The ffs superblock includes a 128-byte region for use by temporary
in-core pointers to summary information. An array in this region
(fs_csp) could overflow on filesystems with a very large number of
cylinder groups (~16000 on i386 with 8k blocks). When this happens,
other fields in the superblock get corrupted, and fsck refuses to
check the filesystem.

Solve this problem by replacing the fs_csp array in 'struct fs'
with a single pointer, and add padding to keep the length of the
128-byte region fixed. Update the kernel and userland utilities
to use just this single pointer.

With this change, the kernel no longer makes use of the superblock
fields 'fs_csshift' and 'fs_csmask'. Add a comment to newfs/mkfs.c
to indicate that these fields must be calculated for compatibility
with older kernels.

Reviewed by:	mckusick
2001-01-15 18:30:40 +00:00
Kirk McKusick
cb3ab5aaf7 Properly compute the size of the final block of superblock summary information.
Submitted by:	Ian Dowse <iedowse@maths.tcd.ie>
2001-01-12 21:56:55 +00:00
Robert Watson
7745909c22 o Commit reems of style(9) changes, whitespace improvements, and comment
cleanups.

Obtained from:	TrustedBSD Project
2001-01-07 23:45:56 +00:00
Robert Watson
4301368e49 o Zero the ufs_extattr_header length field (not necessary, but not a bad
idea either) in ufs_extattr_rm.
o More completely fill out the local_aio structure when writing out the
  zero'd extended attribute in ufs_extattr_rm -- previoulsy, this worked
  fine, but probably should not have.  This corrects extraneous warnings
  about inconsistent inodes following file deletion.

Reviewed by:	jedgar
2001-01-07 23:31:51 +00:00
Robert Watson
9d5703550d o Add an additional EA inconsistency reporting opportunity in
ufs_extattr_rm.
o Make both reporting locations report the function name where the
  inconsistency is discovered, as well as the inode number in question.

Reviewed by:	jedgar
2001-01-07 23:27:58 +00:00
Robert Watson
e33042af13 o Make call to ufs_extattr_rm() in ufs_extattr_vnode_inactive() use
NULL as the credential, not 0, so as to make it more clear what's
  going on.

Obtained from:	TrustedBSD Project
2001-01-07 21:38:26 +00:00
Robert Watson
32e278a63d o Remove unnecessary sanity check involving requested offset of extended
attribute read--the offset is required to be 0 by an earlier check,
  meaning that it will always be within the scope of the attribute data.
  This change should have no impact on executed code paths other than
  removing the unnecessary check: please report if any new failures
  start to occur as a result.

Obtained from:	TrustedBSD Project
2001-01-07 21:07:22 +00:00
Matthew Dillon
2b6b0df712 This implements a better launder limiting solution. There was a solution
in 4.2-REL which I ripped out in -stable and -current when implementing the
low-memory handling solution.  However, maxlaunder turns out to be the saving
grace in certain very heavily loaded systems (e.g. newsreader box).  The new
algorithm limits the number of pages laundered in the first pageout daemon
pass.  If that is not sufficient then suceessive will be run without any
limit.

Write I/O is now pipelined using two sysctls, vfs.lorunningspace and
vfs.hirunningspace.  This prevents excessive buffered writes in the
disk queues which cause long (multi-second) delays for reads.  It leads
to more stable (less jerky) and generally faster I/O streaming to disk
by allowing required read ops (e.g. for indirect blocks and such) to occur
without interrupting the write stream, amoung other things.

NOTE: eventually, filesystem write I/O pipelining needs to be done on a
per-device basis.  At the moment it is globalized.
2000-12-26 19:41:38 +00:00
Kirk McKusick
48d617487d Several small but important fixes for snapshots:
1) Be more tolerant of missing snapshot files by only trying to decrement
   their reference count if they are registered as active.

2) Fix for snapshots of filesystems with block sizes larger than 8K
   (from Ollivier Robert <roberto@eurocontrol.fr>).

3) Fix to avoid losing last block in snapshot file when calculating blocks
   that need to be copied (from Don Coleman <coleman@coleman.org>).
2000-12-19 04:41:09 +00:00
Kirk McKusick
6da443cb22 Get rid of spurious check in ffs_truncate for i_size == length
which fails to set the modification time on the file. The same
check a few lines later takes the correct action.

Submitted by:	Ian Dowse <iedowse@maths.tcd.ie>
2000-12-19 04:20:13 +00:00
Assar Westerlund
ca85ca6099 add a stub for softdep_slowdown so that it's possible to build the
kernel without SOFTUPDATES
2000-12-17 23:59:56 +00:00
Matthew Dillon
6ddaf0f45e Avoid a data-consistency race between write() and mmap()
by ensuring that newly allocated blocks are zerod.  The
race can occur even in the case where the write covers
the entire block.

Reported by: Sven Berkvens <sven@berkvens.net>, Marc Olzheim <zlo@zlo.nu>
2000-12-17 23:57:05 +00:00
Seigo Tanimura
0a439034dc - Move ifs_init() so that it can initialize ifs_inode_hash_mtx.
- s/ffs_inode_hash_lock/ifs_inode_hash_lock/
2000-12-14 09:15:27 +00:00
Seigo Tanimura
937c4dfa08 Do not race for the lock of an inode hash.
Reviewed by:	jhb
2000-12-13 10:04:01 +00:00
Kirk McKusick
1d733bbd10 Preventing runaway kernel soft updates memory, take three.
Previously, the syncer process was the only process in the
system that could process the soft updates background work
list. If enough other processes were adding requests to that
list, it would eventually grow without bound. Because some of
the work list requests require vnodes to be locked, it was
not generally safe to let random processes process the work
list while they already held vnodes locked. By adding a flag
to the work list queue processing function to indicate whether
the calling process could safely lock vnodes, it becomes possible
to co-opt other processes into helping out with the work list.
Now when the worklist gets too large, other processes can safely
help out by picking off those work requests that can be handled
without locking a vnode, leaving only the small number of
requests requiring a vnode lock for the syncer process. With
this change, it appears possible to keep even the nastiest
workloads under control.

Submitted by:	Paul Saab <ps@yahoo-inc.com>
2000-12-13 08:30:35 +00:00
David Malone
7cc0979fd6 Convert more malloc+bzero to malloc+M_ZERO.
Submitted by:	josh@zipperup.org
Submitted by:	Robert Drehmel <robd@gmx.net>
2000-12-08 21:51:06 +00:00
Poul-Henning Kamp
959b7375ed Staticize some malloc M_ instances. 2000-12-08 20:09:00 +00:00
Matthew Dillon
9440653d07 Add necessary bwillwrite() in writev() entry point.
Deal with excessive dirty buffers when msync() syncs non-contiguous
dirty buffers by checking for the case in UFS *before* checking for
clusterability.
2000-12-06 20:55:09 +00:00
Kirk McKusick
71868b020d More aggressively rate limit the growth of soft dependency structures
in the face of multiple processes doing massive numbers of filesystem
operations. While this patch will work in nearly all situations, there
are still some perverse workloads that can overwhelm the system.
Detecting and handling these perverse workloads will be the subject
of another patch.

Reviewed by:	Paul Saab <ps@yahoo-inc.com>
Obtained from:	Ethan Solomita <ethan@geocast.com>
2000-11-20 06:22:39 +00:00
Matthew Dillon
936524aa02 Implement a low-memory deadlock solution.
Removed most of the hacks that were trying to deal with low-memory
    situations prior to now.

    The new code is based on the concept that I/O must be able to function in
    a low memory situation.  All major modules related to I/O (except
    networking) have been adjusted to allow allocation out of the system
    reserve memory pool.  These modules now detect a low memory situation but
    rather then block they instead continue to operate, then return resources
    to the memory pool instead of cache them or leave them wired.

    Code has been added to stall in a low-memory situation prior to a vnode
    being locked.

    Thus situations where a process blocks in a low-memory condition while
    holding a locked vnode have been reduced to near nothing.  Not only will
    I/O continue to operate, but many prior deadlock conditions simply no
    longer exist.

Implement a number of VFS/BIO fixes

	(found by Ian): in biodone(), bogus-page replacement code, the loop
        was not properly incrementing loop variables prior to a continue
        statement.  We do not believe this code can be hit anyway but we
        aren't taking any chances.  We'll turn the whole section into a
        panic (as it already is in brelse()) after the release is rolled.

	In biodone(), the foff calculation was incorrectly
        clamped to the iosize, causing the wrong foff to be calculated
        for pages in the case of an I/O error or biodone() called without
        initiating I/O.  The problem always caused a panic before.  Now it
        doesn't.  The problem is mainly an issue with NFS.

	Fixed casts for ~PAGE_MASK.  This code worked properly before only
        because the calculations use signed arithmatic.  Better to properly
        extend PAGE_MASK first before inverting it for the 64 bit masking
        op.

	In brelse(), the bogus_page fixup code was improperly throwing
        away the original contents of 'm' when it did the j-loop to
        fix the bogus pages.  The result was that it would potentially
        invalidate parts of the *WRONG* page(!), leading to corruption.

	There may still be cases where a background bitmap write is
        being duplicated, causing potential corruption.  We have identified
        a potentially serious bug related to this but the fix is still TBD.
        So instead this patch contains a KASSERT to detect the problem
  	and panic the machine rather then continue to corrupt the filesystem.
	The problem does not occur very often..  it is very hard to
	reproduce, and it may or may not be the cause of the corruption
	people have reported.

Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>)
Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
Kirk McKusick
bd4bd019fb When deleting a file, the ordering of events imposed by soft updates
is to first write the deleted directory entry to disk, second write
the zero'ed inode to disk, and finally to release the freed blocks
and the inode back to the cylinder-group map. As this ordering
requires two disk writes to occur which are normally spaced about
30 seconds apart (except when memory is under duress), it takes
about a minute from the time that a file is deleted until its inode
and data blocks show up in the cylinder-group map for reallocation.
If a file has had only a brief lifetime (less than 30 seconds from
creation to deletion), neither its inode nor its directory entry
may have been written to disk. If its directory entry has not been
written to disk, then we need not wait for that directory block to
be written as the on-disk directory block does not reference the
inode. Similarly, if the allocated inode has never been written to
disk, we do not have to wait for it to be written back either as
its on-disk representation is still zero'ed out. Thus, in the case
of a short lived file, we can simply release the blocks and inode
to the cylinder-group map immediately. As the inode and its blocks
are released immediately, they are immediately available for other
uses. If they are not released for a minute, then other inodes and
blocks must be allocated for short lived files, cluttering up the
vnode and buffer caches. The previous code was a bit too aggressive
in trying to release the blocks and inode back to the cylinder-group
map resulting in their being made available when in fact the inode
on disk had not yet been zero'ed. This patch takes a more conservative
approach to doing the release which avoids doing the release prematurely.
2000-11-14 09:00:25 +00:00
Bruce Evans
1c1752872f Fixed breakage of mknod() in rev.1.48 of ext2_vnops.c and rev.1.126 of
ufs_vnops.c:

1) i_ino was confused with i_number, so the inode number passed to
   VFS_VGET() was usually wrong (usually 0U).
2) ip was dereferenced after vgone() freed it, so the inode number
   passed to VFS_VGET() was sometimes not even wrong.

Bug (1) was usually fatal in ext2_mknod(), since ext2fs doesn't have
space for inode 0 on the disk; ino_to_fsba() subtracts 1 from the
inode number, so inode number 0U gives a way out of bounds array
index.  Bug(1) was usually harmless in ufs_mknod(); ino_to_fsba()
doesn't subtract 1, and VFS_VGET() reads suitable garbage (all 0's?)
from the disk for the invalid inode number 0U; ufs_mknod() returns
a wrong vnode, but most callers just vput() it; the correct vnode is
eventually obtained by an implicit VFS_VGET() just like it used to be.

Bug (2) usually doesn't happen.
2000-11-04 08:10:56 +00:00
Eivind Eklund
e3c4036b18 Give vop_mmap an untimely death. The opportunity to give it a timely
death timed out in 1996.
2000-11-01 17:57:24 +00:00
Poul-Henning Kamp
ef10cd6a64 Add a missing <sys/systm.h> 2000-10-30 20:37:19 +00:00
Poul-Henning Kamp
cf9fa8e725 Move suser() and suser_xxx() prototypes and a related #define from
<sys/proc.h> to <sys/systm.h>.

Correctly document the #includes needed in the manpage.

Add one now needed #include of <sys/systm.h>.
Remove the consequent 48 unused #includes of <sys/proc.h>.
2000-10-29 16:06:56 +00:00
Poul-Henning Kamp
9f69a4578a Weaken a bogus dependency on <sys/proc.h> in <sys/buf.h> by #ifdef'ing
the offending inline function (BUF_KERNPROC) on it being #included
already.

I'm not sure BUF_KERNPROC() is even the right thing to do or in the
right place or implemented the right way (inline vs normal function).

Remove consequently unneeded #includes of <sys/proc.h>
2000-10-29 14:54:55 +00:00
Poul-Henning Kamp
53ce36d17a Remove unneeded #include <sys/proc.h> lines. 2000-10-29 13:57:19 +00:00
Robert Watson
47460a23a0 o Introduce new VOP_ACCESS() flag VADMIN, allowing file systems to perform
"administrative" authorization checks.  In most cases, the VADMIN test
  checks to make sure the credential effective uid is the same as the file
  owner.
o Modify vaccess() to set VADMIN as an available right if the uid is
  appropriate.
o Modify references to uid-based access control operations such that they
  now always invoke VOP_ACCESS() instead of using hard-coded policy checks.
o This allows alternative UFS policies to be implemented by replacing only
  ufs_access() (such as mandatory system policies).
o VOP_ACCESS() requires the caller to hold an exclusive vnode lock on the
  vnode: I believe that new invocations of VOP_ACCESS() are always called
  with the lock held.
o Some direct checks of the uid remain, largely associated with the QUOTA
  and SUIDDIR code.

Reviewed by:	eivind
Obtained from:	TrustedBSD Project
2000-10-19 07:53:59 +00:00
Adrian Chadd
0b0c10b48d Initial commit of IFS - a inode-namespaced FFS. Here is a short
description:

How it works:
--

Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.)
I didn't see the need in duplicating all of sys/ufs/ffs to get this
off the ground.

File creation is done through a special file - 'newfile' . When newfile
is called, the system allocates and returns an inode. Note that newfile
is done in a cloning fashion:

fd = open("newfile", O_CREAT|O_RDWR, 0644);
fstat(fd, &st);

printf("new file is %d\n", (int)st.st_ino);

Once you have created a file, you can open() and unlink() it by its returned
inode number retrieved from the stat call, ie:

fd = open("5", O_RDWR);

The creation permissions depend entirely if you have write access to the
root directory of the filesystem.

To get the list of currently allocated inodes, VOP_READDIR has been added
which returns a directory listing of those currently allocated.

--

What this entails:

* patching conf/files and conf/options to include IFS as a new compile
  option (and since ifs depends upon FFS, include the FFS routines)

* An entry in i386/conf/NOTES indicating IFS exists and where to go for
  an explanation

* Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS
  routines require (ffs_mount() and ffs_reload())

* a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS
  routines. IFS replaces some of the vfsops, and a handful of vnops -
  most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR().
  Any other directory operation is marked as invalid.

What this results in:

* an IFS partition's create permissions are controlled by the perm/ownership of
  the root mount point, just like a normal directory

* Each inode has perm and ownership too

* IFS does *NOT* mean an FFS partition can be opened per inode. This is a
  completely seperate filesystem here

* Softupdates doesn't work with IFS, and really I don't think it needs it.
  Besides, fsck's are FAST. (Try it :-)

* Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC).
  Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against
  this particular inode, and unravelling THAT code isn't trivial. Therefore,
  useful inodes start at 3.

Enjoy, and feedback is definitely appreciated!
2000-10-14 03:02:30 +00:00
Robert Watson
d62bd6076e o Sanity check was inverted, resulting in a possible spurious panic
during unmount if extended attributes were in use.  Correct by removing
  an unneeded (and undesirable) '!'.
2000-10-09 20:04:39 +00:00
Eivind Eklund
7eb9fca557 Blow away the v_specmountpoint define, replacing it with what it was
defined as (rdev->si_mountpoint)
2000-10-09 17:31:39 +00:00
Robert Watson
ff435dcb91 o Move initialization of ump from mp to the top of the function so that
it is defined whenm used in ufs_extattr_uepm_destroy(), fixing a panic
  due to a NULL pointer dereference.

Submitted by:	Wesley Morgan <morganw@chemicals.tacorp.com>
2000-10-06 15:31:28 +00:00
Robert Watson
9de54ba513 o Add call to ufs_extattr_uepm_destroy() in ffs_unmount() so as to clean
up lock on extattrs.
o Get for free a comment indicating where auto-starting of extended
  attributes will eventually occur, as it was in my commit tree also.
  No implementation change here, only a comment.
2000-10-04 04:44:51 +00:00
Robert Watson
d32d56a07d o Correct use of lockdestroy() by adding a new ufs_extattr_uepm_destroy()
call, which should be the last thing down to a per-mount extattr
  management structure, after ufs_extattr_stop() on the file system.
  This currently has the effect only of destroying the per-mount lock
  on extended attributes, and clearing appropriate flags.
o Remove inappropriate invocation in ufs_extattr_vnode_inactive().
2000-10-04 04:41:33 +00:00
Jason Evans
a18b1f1d4d Convert lockmgr locks from using simple locks to using mutexes.
Add lockdestroy() and appropriate invocations, which corresponds to
lockinit() and must be called to clean up after a lockmgr lock is no
longer needed.
2000-10-04 01:29:17 +00:00
Boris Popov
67e871664b Add a lock structure to vnode structure. Previously it was either allocated
separately (nfs, cd9660 etc) or keept as a first element of structure
referenced by v_data pointer(ffs). Such organization leads to known problems
with stacked filesystems.

From this point vop_no*lock*() functions maintain only interlock lock.
vop_std*lock*() functions maintain built-in v_lock structure using lockmgr().
vop_sharedlock() is compatible with vop_stdunlock(), but maintains a shared
lock on vnode.

If filesystem wishes to export lockmgr compatible lock, it can put an address
of this lock to v_vnlock field. This indicates that the upper filesystem
can take advantage of it and use single lock structure for entire (or part)
of stack of vnodes. This field shouldn't be examined or modified by VFS code
except for initialization purposes.

Reviewed in general by:	mckusick
2000-09-25 15:24:04 +00:00
Robert Watson
907da7c385 o Permit UFS Extended Attributes to be associated with special devices
and FIFOs.

Obtained from:	TrustedBSD Project
2000-09-21 19:06:02 +00:00
Robert Watson
bec1333db4 o Disallow privileged processes in jail() from directly accessing
system namespace extended attributes.
o Document privilege/jail() interaction relating to extended
  attributes.

Obtained from:	TrustedBSD Project
2000-09-18 18:10:13 +00:00
Robert Watson
cf48f6e42c o Allow privileged processes in jail() to override sticky bit behavior
on directories.
o Allow privileged processes in jail() to create inodes with the
  setgid bit set even if they are not a member of the group denoted
  by the file creation gid.  This occurs due to inherited gid's from
  parent directories on file creation, allowing a user to create a
  file with a gid that is not in the creating process's credentials.

Obtained from:	TrustedBSD Project
2000-09-18 18:03:49 +00:00
Robert Watson
f5770bb46a o Add a comment clarifying interaction between jail(), privileged processes,
and UFS file flags.  Here's what the comment says, for reference:

	Privileged processes in jail() are permitted to modify
	arbitrary user flags on files, but are not permitted
	to modify system flags.

  In other words, privilege does allow a process in jail to modify user
  flags for objects that the process does not own, but privilege will
  not permit the setting of system flags on the file.

Obtained from:	TrustedBSD Project
2000-09-18 17:58:15 +00:00