immediately flag any page that is allocated to a OBJT_PHYS object as
unmanaged in vm_page_alloc() rather than waiting for a later call to
vm_page_unmanage(). This allows for the elimination of some uses of
the page queues lock.
Change the type of the kernel and kmem objects from OBJT_DEFAULT to
OBJT_PHYS. This allows us to take advantage of the above change to
simplify the allocation of unmanaged pages in kmem_alloc() and
kmem_malloc().
Remove vm_page_unmanage(). It is no longer used.
vm_page_free_toq() to account for recent changes that allow
vm_page_free_toq() to be called on some pages without the page queues lock
being held, specifically, pages that are not contained in a vm object and
not a member of a page queue. (Examples of such pages include page table
pages, pv entry pages, and uma small alloc pages.)
is actually being added to the hold queue, not the free queue. At the same
time, avoid unnecessary tests to wake up threads waiting for free memory
and the idle thread that zeroes free pages. (These tests will be performed
later when the page finally moves from the hold queue to the free queue.)
inlined and a procedure call is made in the rare case, i.e., when it is
necessary to sleep. In this case, inlining the test actually makes the
kernel smaller.
page queues-synchronized flag. Reduce the scope of the page queues lock in
vm_fault() accordingly.
Move vm_fault()'s call to vm_object_set_writeable_dirty() outside of the
scope of the page queues lock. Reviewed by: tegge
Additionally, eliminate an unnecessary dereference in computing the
argument that is passed to vm_object_set_writeable_dirty().
synchronized by the lock on the object containing the page.
Transition PG_WANTED and PG_SWAPINPROG to use the new field,
eliminating the need for holding the page queues lock when setting
or clearing these flags. Rename PG_WANTED and PG_SWAPINPROG to
VPO_WANTED and VPO_SWAPINPROG, respectively.
Eliminate the assertion that the page queues lock is held in
vm_page_io_finish().
Eliminate the acquisition and release of the page queues lock
around calls to vm_page_io_finish() in kern_sendfile() and
vfs_unbusy_pages().
Originally, I had adopted sparc64's name, pmap_clear_write(), for the
function that is now pmap_remove_write(). However, this function is more
like pmap_remove_all() than like pmap_clear_modify() or
pmap_clear_reference(), hence, the name change.
The higher-level rationale behind this change is described in
src/sys/amd64/amd64/pmap.c revision 1.567. The short version is that I'm
trying to clean up and fix our support for execute access.
Reviewed by: marcel@ (ia64)
vm_page_startup(). As a result, we now only lookup the tunable once
instead of looking it up once for every physical page of memory in the
system. This cuts out about a 1 second or so delay in boot on x86
systems. The delay is much larger and more noticable on sun4v apparently.
Reported by: kmacy
MFC after: 1 week
These pages are allocated from the direct map, and were not previous
tracked. This included the vm_page_array and the early UMA bootstrap
pages.
Reviewed by: peter
via the debug.minidump sysctl and tunable.
Traditional dumps store all physical memory. This was once a good thing
when machines had a maximum of 64M of ram and 1GB of kvm. These days,
machines often have many gigabytes of ram and a smaller amount of kvm.
libkvm+kgdb don't have a way to access physical ram that is not mapped
into kvm at the time of the crash dump, so the extra ram being dumped
is mostly wasted.
Minidumps invert the process. Instead of dumping physical memory in
in order to guarantee that all of kvm's backing is dumped, minidumps
instead dump only memory that is actively mapped into kvm.
amd64 has a direct map region that things like UMA use. Obviously we
cannot dump all of the direct map region because that is effectively
an old style all-physical-memory dump. Instead, introduce a bitmap
and two helper routines (dump_add_page(pa) and dump_drop_page(pa)) that
allow certain critical direct map pages to be included in the dump.
uma_machdep.c's allocator is the intended consumer.
Dumps are a custom format. At the very beginning of the file is a header,
then a copy of the message buffer, then the bitmap of pages present in
the dump, then the final level of the kvm page table trees (2MB mappings
are expanded into a 4K page mappings), then the sparse physical pages
according to the bitmap. libkvm can now conveniently access the kvm
page table entries.
Booting my test 8GB machine, forcing it into ddb and forcing a dump
leads to a 48MB minidump. While this is a best case, I expect minidumps
to be in the 100MB-500MB range. Obviously, never larger than physical
memory of course.
minidumps are on by default. It would want be necessary to turn them off
if it was necessary to debug corrupt kernel page table management as that
would mess up minidumps as well.
Both minidumps and regular dumps are supported on the same machine.
and it has not plenty of free pages it tries to free pages in the cache queue.
Unfortunately freeing a cached page requires the locking of the object that
owns the page. However in the context of allocating pages we may not be able
to lock the object and thus can only TRY to lock the object. If the locking try
fails the cache page can not be freed and is activated to move it out of the way
so that we may try to free other cache pages.
If all pages in the cache belong to objects that are currently locked the
cache queue can be emptied without freeing a single page. This scenario caused
two problems:
1) vm_page_alloc always failed allocation when it tried freeing pages from
the cache queue and failed to do so. However if there are more than
cnt.v_interrupt_free_min pages on the free list it should return pages
when requested with priority VM_ALLOC_SYSTEM. Failure to do so can cause
resource exhaustion deadlocks.
2) Threads than need to allocate pages spend a lot of time cleaning up the
page queue without really getting anything done while the pagedaemon
needs to work overtime to refill the cache.
This change fixes the first problem. (1)
Reviewed by: tegge@
- provide an interface (macros) to the page coloring part of the VM system,
this allows to try different coloring algorithms without the need to
touch every file [1]
- make the page queue tuning values readable: sysctl vm.stats.pagequeue
- autotuning of the page coloring values based upon the cache size instead
of options in the kernel config (disabling of the page coloring as a
kernel option is still possible)
MD changes:
- detection of the cache size: only IA32 and AMD64 (untested) contains
cache size detection code, every other arch just comes with a dummy
function (this results in the use of default values like it was the
case without the autotuning of the page coloring)
- print some more info on Intel CPU's (like we do on AMD and Transmeta
CPU's)
Note to AMD owners (IA32 and AMD64): please run "sysctl vm.stats.pagequeue"
and report if the cache* values are zero (= bug in the cache detection code)
or not.
Based upon work by: Chad David <davidc@acns.ab.ca> [1]
Reviewed by: alc, arch (in 2004)
Discussed with: alc, Chad David, arch (in 2004)
by the zero-copy sockets method, and written to before the transmission
completes, we need to destroy all of the existing mappings to the page,
not just the one that we fault on. Otherwise, the mappings will no longer
be to the same page and changes made through one of the mappings will not
be visible through the others.
Observed by: tegge
If a copy-on-write fault occurs on the page, the new copy should inherit
a part of the original page's wire count.
Submitted by: tegge
MFC after: 1 week
is inserted.
- In vm_page_remove() drop the backing vnode when the last page
is removed.
- Don't check the vnode to see if it must be reclaimed on every
call to vm_page_free_toq() as we only check it now when it is
actually required. This saves us two lock operations per call.
Sponsored by: Isilon Systems, Inc.
queue and (possibly) unlocking the containing object from
vm_page_alloc() to vm_page_select_cache(). Recent optimizations to
vm_map_pmap_enter() (see vm_map.c revisions 1.362 and 1.363) and
pmap_enter_quick() have resulted in panic()s because vm_page_alloc()
mistakenly unlocked objects that had not been locked by
vm_page_select_cache().
Reported by: Peter Holm and Kris Kennaway
need for most calls to vm_page_busy(). Specifically, most calls to
vm_page_busy() occur immediately prior to a call to vm_page_remove().
In such cases, the containing vm object is locked across both calls.
Consequently, the setting of the vm page's PG_BUSY flag is not even
visible to other threads that are following the synchronization
protocol.
This change (1) eliminates the calls to vm_page_busy() that
immediately precede a call to vm_page_remove() or functions, such as
vm_page_free() and vm_page_rename(), that call it and (2) relaxes the
requirement in vm_page_remove() that the vm page's PG_BUSY flag is
set. Now, the vm page's PG_BUSY flag is set only when the vm object
lock is released while the vm page is still in transition. Typically,
this is when it is undergoing I/O.
that indicates that the caller does not want a page with its busy flag set.
In many places, the global page queues lock is acquired and released just
to clear the busy flag on a just allocated page. Both the allocation of
the page and the clearing of the busy flag occur while the containing vm
object is locked. So, the busy flag might as well never be set.
errors are in rarely executed paths.
1. Each time the retry_alloc path is taken, the PG_BUSY must be set again.
Otherwise vm_page_remove() panics.
2. There is no need to set PG_BUSY on the newly allocated page before
freeing it. The page already has PG_BUSY set by vm_page_alloc().
Setting it again could cause an assertion failure.
MFC after: 2 weeks
vm_page_io_finish(). The motivation being to transition synchronization of
the vm_page's busy field from the global page queues lock to the per-object
lock.