flags. We now create asynchronous contexts or syscall contexts only.
Syscall contexts differ from the minimal ABI dictated contexts by
having the scratch registers saved and restored because that's where
we keep the syscall arguments and syscall return values.
Since this change affects KSE, have it use kse_switchin(2) for the
"new" syscall context.
UTS with the stack correctly aligned. Also, while here, use an indirect
jump rather than the pushq/ret hack.
This fixes threaded apps that use floating point for me, although
it hasn't solved all the problems. It is an improvement though.
Preservation of the 128 byte red zone hasn't been resolved yet.
Approved by: re (scottl)
about the fpu code here. It should be using fxsave/fxrstor instead of
saving/restoring the control word. The SSE registers are used a lot in
gcc generated code on amd64. I'm not sure how this all fits together
though.
pthread_md.h. This commit only moves the definition; it does not
change it for any of the platforms. This more easily allows 64-bit
architectures (in particular) to pick a slightly larger stack size.
THR_SETCONTEXT as PANIC(). The THR_SETCONTEXT macro is currently not
used, which means that the definition we had could be wrong, overly
pessimistic or unknowingly right. I don't like the odds...
The new _ia64_break_setcontext() and corresponding kernel fixes make
KSE mostly usable. There's still a case where we don't properly
restore a context and end up with a NaT consumption fault (typically
an indication for not handling NaT collection points correctly),
but at least now mutex_d works...
state for amd64 was twice as large as necessary. Peter
recently fixed this, so the comment no longer applies.
Also, since the size of struct mcontext changed, adjust
the threads library version of get&set context to match.
FYI, any change layout/size change to any arch's struct
mcontext will likely need some minor changes in libpthread.
instead of long types for low-level locks.
Add prototypes for some internal libc functions that are
wrapped by the library as cancellation points.
Add memory barriers to alpha atomic swap functions (submitted
by davidxu).
Requested by: bde
happens, the context of the interrupted thread is exported to
userland. Unlike most contexts, it will be an async context and
we cannot easily use our existing functions to set such a
context.
To avoid a lot of complexity that may possibly interfere with
the common case, we simply let the kernel deal with it. However,
we don't use the EPC based syscall path to invoke setcontext(2).
No, we use the break-based syscall path. That way the trapframe
will be compatible with the context we're trying to restore and
we save the kernel a lot of trouble. The kind of trouble we did
not want to go though ourselves...
However, we also need to set the threads mailbox and there's no
syscall to help us out. To avoid creating a new syscall, we use
the context itself to pass the information to the kernel so that
the kernel can update the mailbox. This involves setting a flag
(_MC_FLAGS_KSE_SET_MBOX) and setting ifa (the address) and isr
(the value).
TCB. We know that the thread pointer points to &tcb->tcb_tp, so all
we have to do is subtract offsetof(struct tcb, tcb_tp) from the
thread pointer to get to the TCB. Any reasonably smart compiler will
translate accesses to fields in the TCB as negative offsets from TP.
In _tcb_set() make sure the fake TCB gets a pointer to the current
KCB, just like any other TCB. This fixes a NULL-pointer dereference
in _thr_ref_add() when it tried to get the current KSE.
that the TLS is 16-byte aligned, as well as guarantee that the thread
pointer is 16-byte aligned as it points to struct ia64_tp. Likewise,
struct tcb and struct ksd are also guaranteed to be 16-byte aligned
(if they weren't already).
archs that can (or are required to) have per-thread registers.
Tested on i386, amd64; marcel is testing on ia64 and will
have some follow-up commits.
Reviewed by: davidxu
context functions. We don't need to enter the kernel anymore. The
contexts are compatible (ie a context created by getcontext() can
be restored by _ia64_restore_context()).
While here, make the use of THR_ALIGNBYTES and THR_ALIGN a no-op.
They are going to be removed anyway.
We write 1 for r8 in the context so that _ia64_restore_context()
will return with a non-zero value. _ia64_save_context() always
return 0.
o In _ia64_restore_context(), don't restore the thread pointer. It
is not normally part of the context. Also, restore the return
registers. We get called for contexts created by getcontext(),
which means we have to restore all the syscall return values.
the userland version of [gs]etcontext to switch between a thread
and the UTS scheduler (and back again). This also fixes a bug
in i386 _thr_setcontext() which wasn't properly restoring the
context.
Reviewed by: davidxu
functions are derived from the swapctx() and restorectx() (resp)
from sys/ia64/ia64/context.s. The code is expected to be 99%
correct, but has not yet been tested.
Note that with these functions operating on mcontext_t, we also
created the foundation upon which we can implement getcontext(2)
and setcontext(2) replacements. It's not guaranteed that the use
of these syscalls and _ia64_{save|restore}_context() on the same
uicontext_t is actually going to work. Replacing the syscalls is
now trivially achieved.
This commit completes the ia64 port of libpthread itself (modulo
testing and bugfixes).
the register stack and memory stack and call the function given to it.
While here, provide empty, non-working, stubs for the context functions
(_ia64_save_context() and _ia64_restore_context()) so that anyone can at
least compile libkse from CVS sources. Real implementations will follow
soon.
minimize the amount and complexity of assembly code that needs to be
written. This way the core functionality is spread over 3 elementary
functions that don't have to do anything that can more easily and
more safely be done in C. As such, assembly code will only have to
know about the definition of mcontext_t.
The runtime cost of not having these functions being inlined is less
important than the cleanliness and maintainability of the code at
this stage of the implementation.
by moving the definition of struct ksd to pthread_md.h and removing
the inclusion of ksd.h from thr_private.h (which has the definition
of struct kse and kse_critical_t). This allows ksd.h to have inline
functions that use struct kse and kse_critical_t and generally
yields a cleaner implementation at the cost of not having all ksd
related types/definitions in one header.
Implement the ksd functionality on ia64 by using inline functions
and permanently remove ksd.c from the ia64 specific makefile.
This change does not clean up the i386 specific version of ksd.h.
NOTE: The ksd code on ia64 abuses the tp register in the same way
as it is abused in libthr in that it is incompatible with the
runtime specification. This will be address when support for TLS
hits the tree.
In _thread_switch, set current thread pointer in kse mailbox
only after all registers copied out of thread mailbox, kernel will do
upcall at trap time, if set current thread pointer before loading all
registers from thread mailbox, at trap time, the thread mailbox data
will be overwritten by kernel, result is junk data is loaded into CPU.