running time for a full fsck. It also reduces the random access time
for large files and speeds the traversal time for directory tree walks.
The key idea is to reserve a small area in each cylinder group
immediately following the inode blocks for the use of metadata,
specifically indirect blocks and directory contents. The new policy
is to preferentially place metadata in the metadata area and
everything else in the blocks that follow the metadata area.
The size of this area can be set when creating a filesystem using
newfs(8) or changed in an existing filesystem using tunefs(8).
Both utilities use the `-k held-for-metadata-blocks' option to
specify the amount of space to be held for metadata blocks in each
cylinder group. By default, newfs(8) sets this area to half of
minfree (typically 4% of the data area).
This work was inspired by a paper presented at Usenix's FAST '13:
www.usenix.org/conference/fast13/ffsck-fast-file-system-checker
Details of this implementation appears in the April 2013 of ;login:
www.usenix.org/publications/login/april-2013-volume-38-number-2.
A copy of the April 2013 ;login: paper can also be downloaded
from: www.mckusick.com/publications/faster_fsck.pdf.
Reviewed by: kib
Tested by: Peter Holm
MFC after: 4 weeks
extended using growfs(8). The problem here is that geom_label checks if
the filesystem size recorded in UFS superblock is equal to the provider
(i.e. device) size. This check cannot be removed due to backward
compatibility. On the other hand, in most cases growfs(8) cannot set
fs_size in the superblock to match the provider size, because, differently
from newfs(8), it cannot recompute cylinder group sizes.
To fix this problem, add another superblock field, fs_providersize, used
only for this purpose. The geom_label(4) will attach if either fs_size
(filesystem created with newfs(8)) or fs_providersize (filesystem expanded
using growfs(8)) matches the device size.
PR: kern/165962
Reviewed by: mckusick
Sponsored by: FreeBSD Foundation
This tool only consists of a single C file, so we can simply mark
everything except main() static. This seems to shave off about 8% of the
binary size.
These tools declare global variables without using the static keyword,
even though their use is limited to a single C-file, or without placing
an extern declaration of them in the proper header file.
operate on one type of filesystem, mention this.
While here, capitalise the use of "UFS" in growfs.8 to match other uses of
the term in other man pages.
MFC after: 1 week
brings in support for an optional intent log which eliminates the need
for background fsck on unclean shutdown.
Sponsored by: iXsystems, Yahoo!, and Juniper.
With help from: McKusick and Peter Holm
fragments in the file system by fragment (block) number. This new
mode does the necessary arithmetic to generate absolute fragment
numbers rather than than the cg-relative numbers printed in the default
mode.
If -f is passed once, contiguous fragment ranges are collapsed into
an X-Y format as free block lists are currently printed in regular
dumpfs output, but if specified twice, all block numbers are printed
individually, allowing both compact and more script-friendly
representation.
This proves quite handy when attempting to recover deleted data, as it
allows exclusion of non-deleted data from blocks searched.
MFC after: 1 week
Discussed with: jeff, Richard Clayton <richard dot clayton at cl.cam.ac.uk>
Sponsored by: Google, Inc.
to create it. A small number of options are not marshalled as they are things
it would be dumb to spit out, as they are used by internal computations, and
newfs may change them, or they may not be directly apparent.
the old 8-bit fs_old_flags to the new location the first time that the
filesystem is mounted by a new kernel. One of the unused flags in
fs_old_flags is used to indicate that the flags have been moved.
Leave the fs_old_flags word intact so that it will work properly if
used on an old kernel.
Change the fs_sblockloc superblock location field to be in units
of bytes instead of in units of filesystem fragments. The old units
did not work properly when the fragment size exceeeded the superblock
size (8192). Update old fs_sblockloc values at the same time that
the flags are moved.
Suggested by: BOUWSMA Barry <freebsd-misuser@netscum.dyndns.dk>
Sponsored by: DARPA & NAI Labs.