than a NOP. bounds_check_with_label() would return -1 yet NOT set any
of the bio flags to show an error. This meant the caller would not
properly see that bounds_check_with_label() did not do any work. This
prevented newfs(8) from being able to write a file system on any partition
other than `c' on a `ccd'.
The logs of this file do not tell _why_ bounds_check_with_label() was
emasculated. Nor are there any `XXX' comments. So we'll unemasculated
it, and see what breaks.
Submitted by: gallatin
- Introduce lock classes and lock objects. Each lock class specifies a
name and set of flags (or properties) shared by all locks of a given
type. Currently there are three lock classes: spin mutexes, sleep
mutexes, and sx locks. A lock object specifies properties of an
additional lock along with a lock name and all of the extra stuff needed
to make witness work with a given lock. This abstract lock stuff is
defined in sys/lock.h. The lockmgr constants, types, and prototypes have
been moved to sys/lockmgr.h. For temporary backwards compatability,
sys/lock.h includes sys/lockmgr.h.
- Replace proc->p_spinlocks with a per-CPU list, PCPU(spinlocks), of spin
locks held. By making this per-cpu, we do not have to jump through
magic hoops to deal with sched_lock changing ownership during context
switches.
- Replace proc->p_heldmtx, formerly a list of held sleep mutexes, with
proc->p_sleeplocks, which is a list of held sleep locks including sleep
mutexes and sx locks.
- Add helper macros for logging lock events via the KTR_LOCK KTR logging
level so that the log messages are consistent.
- Add some new flags that can be passed to mtx_init():
- MTX_NOWITNESS - specifies that this lock should be ignored by witness.
This is used for the mutex that blocks a sx lock for example.
- MTX_QUIET - this is not new, but you can pass this to mtx_init() now
and no events will be logged for this lock, so that one doesn't have
to change all the individual mtx_lock/unlock() operations.
- All lock objects maintain an initialized flag. Use this flag to export
a mtx_initialized() macro that can be safely called from drivers. Also,
we on longer walk the all_mtx list if MUTEX_DEBUG is defined as witness
performs the corresponding checks using the initialized flag.
- The lock order reversal messages have been improved to output slightly
more accurate file and line numbers.
and change the u_int mtx_saveintr member of struct mtx to a critical_t
mtx_savecrit.
- On the alpha we no longer need a custom _get_spin_lock() macro to avoid
an extra PAL call, so remove it.
- Partially fix using mutexes with WITNESS in modules. Change all the
_mtx_{un,}lock_{spin,}_flags() macros to accept explicit file and line
parameters and rename them to use a prefix of two underscores. Inside
of kern_mutex.c, generate wrapper functions for
_mtx_{un,}lock_{spin,}_flags() (only using a prefix of one underscore)
that are called from modules. The macros mtx_{un,}lock_{spin,}_flags()
are mapped to the __mtx_* macros inside of the kernel to inline the
usual case of mutex operations and map to the internal _mtx_* functions
in the module case so that modules will use WITNESS and KTR logging if
the kernel is compiled with support for it.
sections.
- Add implementations of the critical_enter() and critical_exit() functions
and remove restore_intr() and save_intr().
- Remove the somewhat bogus disable_intr() and enable_intr() functions on
the alpha as the alpha actually uses a priority level and not simple bit
flag on the CPU.
- If there is no gdb device, just return without trying to return any
value since gdb_handle_exception() returns void.
- When calling prom_halt(), pass in a value telling it to actually halt
and not to randomly choose whether or not to halt or reboot depending on
whatever value happened to be in a0 when the call was made.
an AST results in a signal being delivered, we'll need to do a full register
restore so as to properly setup the signal handler. This is somewhat of
a pessimization, because ast() will be called twice in this case.
This fixes several problems that have been reported where signal intensive
userland apps (most notably dump) have been SEGV'ing for no fault of their
own.
Thanks to Peter Jeremy <peter.jeremy@alcatel.com.au> for presenting the
AST scenario which led to me fiinally figuring this out.
Reviewed by: jhb
Make the name cache hash as well as the nfsnode hash use it.
As a special tweak, create an unsigned version of register_t. This allows
us to use a special tweak for the 64 bit versions that significantly
speeds up the i386 version (ie: int64 XOR int64 is slower than int64
XOR int32).
The code layout is a little strange for the string function, but I was
able to get between 5 to 10% improvement over the original version I
started with. The layout affects gcc code generation choices and this way
was fastest on x86 and alpha.
Note that 'CPUTYPE=p3' etc makes a fair difference to this. It is
around 45% faster with -march=pentiumpro on a p6 cpu.
if we hold a spin mutex, since we can trivially get into deadlocks if we
start switching out of processes that hold spinlocks. Checking to see if
interrupts were disabled was a sort of cheap way of doing this since most
of the time interrupts were only disabled when holding a spin lock. At
least on the i386. To fix this properly, use a per-process counter
p_spinlocks that counts the number of spin locks currently held, and
instead of checking to see if interrupts are disabled in the witness code,
check to see if we hold any spin locks. Since child processes always
start up with the sched lock magically held in fork_exit(), we initialize
p_spinlocks to 1 for child processes. Note that proc0 doesn't go through
fork_exit(), so it starts with no spin locks held.
Consulting from: cp
- Don't try to grab Giant before postsig() in userret() as it is no longer
needed.
- Don't grab Giant before psignal() in ast() but get the proc lock instead.
supported architectures such as the alpha. This allows us to save
on kernel virtual address space, TLB entries, and (on the ia64) VHPT
entries. pmap_map() now modifies the passed in virtual address on
architectures that do not support direct-mapped segments to point to
the next available virtual address. It also returns the actual
address that the request was mapped to.
- On the IA64 don't use a special zone of PV entries needed for early
calls to pmap_kenter() during pmap_init(). This gets us in trouble
because we end up trying to use the zone allocator before it is
initialized. Instead, with the pmap_map() change, the number of needed
PV entries is small enough that we can get by with a static pool that is
used until pmap_init() is complete.
Submitted by: dfr
Debugging help: peter
Tested by: me
This lets us run programs containing newer (eg bwx) instructions
on older (eg EV5 and less) machines. One win is that we can
now run Acrobat4 on EV4s and EV5s.
Obtained from: NetBSD
Glanced at by: mjacob
MFS: bring the consistent `compat_3_brand' support
This should fix the linux-related panics reported
by naddy@mips.inka.de (Christian Weisgerber)
Forgotten by: obrien
- Don't hold sched_lock around addupc_task() as this apparently breaks
profiling badly due to sched_lock being held across copyin().
Reported by: bde (2)
work because opt_preemption.h wasn't #include'd. Instead, make use of the
do_switch parameter to ithread_schedule() and do the check in the alpha
interrupt code.
scheduling an interrupt thread to run when needed. This has the side
effect of enabling support for entropy gathering from interrupts on
all architectures.
- Change the software interrupt and x86 and alpha hardware interrupt code
to use ithread_schedule() for most of their processing when scheduling
an interrupt to run.
- Remove the pesky Warning message about interrupt threads having entropy
enabled. I'm not sure why I put that in there in the first place.
- Add more error checking for parameters and change some cases that
returned EINVAL to panic on failure instead via KASSERT().
- Instead of doing a documented evil hack of setting the P_NOLOAD flag
on every interrupt thread whose pri was SWI_CLOCK, set the flag
explicity for clk_ithd's proc during start_softintr().
in mi_switch() just before calling cpu_switch() so that the first switch
after a resched request will satisfy the request.
- While I'm at it, move a few things into mi_switch() and out of
cpu_switch(), specifically set the p_oncpu and p_lastcpu members of
proc in mi_switch(), and handle the sched_lock state change across a
context switch in mi_switch().
- Since cpu_switch() no longer handles the sched_lock state change, we
have to setup an initial state for sched_lock in fork_exit() before we
release it.
Please note:
When committing changes to this file, it is important to note that
linux is not freebsd -- their system call numbers (and sometimes names)
are different on different platforms. When in doubt (and you always need
to be) check the arch-specific unistd.h and entry.S files in the linux
kernel sources to see what the syscall numbers really are.
always on curproc. This is needed to implement signal delivery properly
(see a future log message for kern_sig.c).
Debogotified the definition of aston(). aston() was defined in terms
of signotify() (perhaps because only the latter already operated on
a specified process), but aston() is the primitive.
Similar changes are needed in the ia64 versions of cpu.h and trap.c.
I didn't make them because the ia64 is missing the prerequisite changes
to make astpending and need_resched per-process and those changes are
too large to make without testing.