2^32 bps or greater to be used. Prior to this, bandwidth parameters
would simply wrap at the 2^32 boundary. The computations in the HFSC
scheduler and token bucket regulator have been modified to operate
correctly up to at least 100 Gbps. No other algorithms have been
examined or modified for correct operation above 2^32 bps (some may
have existing computation resolution or overflow issues at rates below
that threshold). pfctl(8) will now limit non-HFSC bandwidth
parameters to 2^32 - 1 before passing them to the kernel.
The extensions to the pf(4) ioctl interface have been made in a
backwards-compatible way by versioning affected data structures,
supporting all versions in the kernel, and implementing macros that
will cause existing code that consumes that interface to use version 0
without source modifications. If version 0 consumers of the interface
are used against a new kernel that has had bandwidth parameters of
2^32 or greater configured by updated tools, such bandwidth parameters
will be reported as 2^32 - 1 bps by those old consumers.
All in-tree consumers of the pf(4) interface have been updated. To
update out-of-tree consumers to the latest version of the interface,
define PFIOC_USE_LATEST ahead of any includes and use the code of
pfctl(8) as a guide for the ioctls of interest.
PR: 211730
Reviewed by: jmallett, kp, loos
MFC after: 2 weeks
Relnotes: yes
Sponsored by: RG Nets
Differential Revision: https://reviews.freebsd.org/D16782
After consultation with SPDX experts and their matching guidelines[1],
the licensing doesn't exactly match the BSD-2-Clause. It yet remains to be
determined if they are equivalent or if there is a recognized license that
matches but it is safer to just revert the tags.
Let this also be a reminder that on FreeBSD, SPDX tags are only advisory
and have no legal value (but IANAL).
Pointyhat to: pfg
Thanks to: Rodney Grimes, Gary O'Neall
[1] https://spdx.org/spdx-license-list/matching-guidelines
and tested over the past two months in the ipfw3-head branch. This
also happens to be the same code available in the Linux and Windows
ports of ipfw and dummynet.
The major enhancement is a completely restructured version of
dummynet, with support for different packet scheduling algorithms
(loadable at runtime), faster queue/pipe lookup, and a much cleaner
internal architecture and kernel/userland ABI which simplifies
future extensions.
In addition to the existing schedulers (FIFO and WF2Q+), we include
a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new,
very fast version of WF2Q+ called QFQ.
Some test code is also present (in sys/netinet/ipfw/test) that
lets you build and test schedulers in userland.
Also, we have added a compatibility layer that understands requests
from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries,
and replies correctly (at least, it does its best; sometimes you
just cannot tell who sent the request and how to answer).
The compatibility layer should make it possible to MFC this code in a
relatively short time.
Some minor glitches (e.g. handling of ipfw set enable/disable,
and a workaround for a bug in RELENG_7's /sbin/ipfw) will be
fixed with separate commits.
CREDITS:
This work has been partly supported by the ONELAB2 project, and
mostly developed by Riccardo Panicucci and myself.
The code for the qfq scheduler is mostly from Fabio Checconi,
and Marta Carbone and Francesco Magno have helped with testing,
debugging and some bug fixes.