When restarting the sequencer, ensure that the SCBCNT register
is 0. A non-zero count will prevent the setting of the CCSCBDIR
bit in any future dma operations. The only time CCSCBCNT would
be non-zero is if we happened to halt the dma during a reset,
but even that should never happen. Better safe than sorry.
When a command completes before the target responds to an
ATN for a recovery command, we now notify the kernel so that
any recovery operation requeued in the qinfifo can be removed
safely. In the past, we did this in ahc_done(), but ahc_done()
may be called without the card paused. This also avoids a
recursive call to ahc_search_qinifo() which could have occurred if
ahc_search_qinififo() happened to be the routine to complete
a recovery action.
Fix 8bit math used for adjusting the qinfifo. The index must
be wrapped properly within the 256 entry array. We rely on the
fact that qinfifonext is a uint8_t in most cases to handle
this wrap, but we missed a few spots where the resultant
calculation was promoted to an int.
Change the way that we deal with aborting the first or second
entry from the qinfifo. We now swap the first entry in the
qinfifo with the "next queued scb" to force the sequencer
to see an abort collision if we ever touch the qinififo while
the sequencer is mid SCB dma.
aic7xxx.reg:
Add new MKMSG_FAILED sequencer interrupt. This displaced
the BOGUS_TAG interrupt used in some previous sequencer code
debugging.
aic7xxx.seq:
Increment our position in the qinfifo only once the dma
is complete and we have verified that the queue has not
been changed during our DMA. This simplifies code in the
kernel.
Protect against "instruction creep" when issuing a pausing
sequencer interrupt. On at least the 7890/91/96/97, the
sequencer will coast after issuing the interrupt for up
to two instructions. In the past we delt with this by
using carefully placed nops. Now we call a routine to
issue the interrupt followed by a nop and a ret.
Tell the kernel should an SCB complete with the MK_MESSAGE
flag still set. This means the target ignored our ATN request.
Clear the channel twice as we exit the data phase. On the
aic7890/91, the S/G preload logic may require the second
clearing to get the last S/G out of the FIFO.
aic7xxx_freebsd.c:
Don't bother searching the qinfifo for a doubly queued
recovery scb in ahc_done. This case is handled by the
core driver now.
Free the path used to issue async callbacks after the callback
is complete.
aic7xxx_inline.h:
Split the SCB queue routine into a routine that swaps
the SCB with the "next queued SCB" and a routine that
calls the swapping routine and notifies the card of
the new SCB. The swapping routine is now also used by
ahc_search_qinfifo.
Filter incoming transfer negotiation requests to ensure they
never exceed the settings specified by the user.
In restart sequencer attempt to deal with a bug in the aic7895.
If a third party reset occurs at just the right time, the
stack register can lock up. When restarting the sequencer
after handling the SCSI reset, poke SEQADDR1 before resting
the sequencers program counter.
When something strange happens, dump the card's transaction
state via ahc_dump_card_state(). This should aid in debugging.
Handle request sense transactions via the QINFIFO instead of
attaching them to the waiting queue directly. The waiting
queue consumes card SCB resources and, in the pathological case
of every target on the bus beating our selection attemps and
issuing a check condition, could have caused us to run out
of SCBs. I have never seen this happen, and only early
cards with 3 or 4 SCBs had any real chance of ever getting
into this state.
Add additional sequencer interrupt codes to support firmware
diagnostics. The diagnostic code is enabled with the
AHC_DEBUG_SEQUENCER kernel option.
Make it possible to switch into and out of target mode on
the fly. The card comes up by default as an initiator but
will switch into target mode as soon as an enable lun operation
is performed. As always, target mode behavior is gated
by the AHC_TMODE_ENABLE kernel option so most users will
not be affected by this change.
In ahc_update_target_msg_request(), also issue a new
request if the ppr_options have changed.
Never issue a PPR as a target. It is forbidden by the spec.
Correct a bug in ahc_parse_msg() that prevented us from
responding to PPR messages as a target.
Mark SCBs that are on the untagged queue with a flag instead
of checking several fields in the SCB to see if the SCB should
be on the queue. This makes it easier for things like automatic
request sense requests to be queued without touching the
untagged queues even though they are untagged requests.
When dealing with ignore wide residue messages that occur
in the middle of a transfer, reset HADDR, not SHADDR for
non-ultra2 chips. Although SHADDR is where the firmware
fetches the ending transfer address for a save data pointers
request, it is readonly. Setting HADDR has the side effect
of also updating SHADDR.
Cleanup the output of ahc_dump_card_state() by nulling out the
free scb list in the non-paging case. The free list is only
used if we must page SCBs.
Correct the transmission of cdbs > 12 bytes in length. When
swapping HSCBs prior to notifing the sequencer of the new
transaction, the bus address pointer for the cdb must also
be recalculated to reflect its new location. We now defer
the calculation of the cdb address until just before queing
it to the card.
When pulling transfer negotiation settings out of scratch
ram, convert 5MHz/clock doubled settings to 10MHz.
Add a new function ahc_qinfifo_requeue_tail() for use by
error recovery actions and auto-request sense operations.
These operations always occur when the sequencer is paused,
so we can avoid the extra expense incurred in the normal
SCB queue method.
Use the BMOV instruction for all single byte moves on
controllers that support it. The bmov instruction is
twice as fast as an AND with an immediate of 0xFF as
is used on older controllers.
Correct a few bugs in ahc_dump_card_state(). If we have
hardware assisted queue registers, use them to get the
sequencer's idea of the head of the queue. When enumerating
the untagged queue, it helps to use the correct index for
the queue.
aic7xxx.h:
Indicate via a feature flag, which controllers can take
on both the target and the initiator role at the same time.
Add the AHC_SEQUENCER_DEBUG flag.
Add the SCB_CDB32_PTR flag used for dealing with cdbs
with lengths between 13 and 32 bytes.
Add new prototypes.
aic7xxx.reg:
Allow the SCSIBUSL register to be written to. This is
required to fix a selection timeout problem on the 7892/99.
Cleanup the sequencer interrupt codes so that all debugging
codes are grouped at the end of the list.
Correct the definition of the ULTRA_ENB and DISC_DSB locations
in scratch ram. This prevented the driver from properly honoring
these settings when no serial eeprom was available.
Remove an unused sequencer flag.
aic7xxx.seq:
Just before a potential select-out, clear the SCSIBUSL
register. Occasionally, during a selection timeout, the
contents of the register may be presented on the bus,
causing much confusion.
Add sequencer diagnostic code to detect software and or
hardware bugs. The code attempts to verify most list
operations so any corruption is caught before it occurs.
We also track information about why a particular reconnection
request was rejected.
Don't clobber the digital REQ/ACK filter setting in SXFRCTL0
when clearing the channel.
Fix a target mode bug that would cause us to return busy
status instead of queue full in respnse to a tagged transaction.
Cleanup the overrun case. It turns out that by simply
butting the chip in bitbucket mode, it will ack any
bytes until the phase changes. This drasticaly simplifies
things.
Prior to leaving the data phase, make sure that the S/G
preload queue is empty.
Remove code to place a request sense request on the waiting
queue. This is all handled by the kernel now.
Change the semantics of "findSCB". In the past, findSCB
ensured that a freshly paged in SCB appeared on the disconnected
list. The problem with this is that there is no guarantee that
the paged in SCB is for a disconnected transation. We now
defer any list manipulation to the caller who usually discards
the SCB via the free list.
Inline some busy target table operations.
Add a critical section to protect adding an SCB to
the disconnected list.
aic7xxx_freebsd.c:
Handle changes in the transfer negotiation setting API
to filter incoming requests. No filtering is necessary
for "goal" requests from the XPT.
Set the SCB_CDB32_PTR flag when queing a transaction with
a large cdb.
In ahc_timeout, only take action if the active SCB is
the timedout SCB. This deals with the case of two
transactions to the same device with different timeout
values.
Use ahc_qinfifo_requeu_tail() instead of home grown
version.
aic7xxx_inline.h:
Honor SCB_CDB32_PTR when queuing a new request.
aic7xxx_pci.c:
Use the maximum data fifo threshold for all chips.
during the qinfifo optimization. When swapping HSCBs, we were only copying
the first 32 bytes, the amount used in the common case of a cdb <= 12 bytes.
Larger cdbs are stored in the second 32 bytes of the cdb.
Noticed by: Marc Frajola <marc@terasolutions.com>
past we stored this data in the CCB and attained the CCB via a pointer
in the SCB. In ahc_timeout(), however, the timedout SCB may have already
been completed (inherent race), meaning that the CCB could have been recycled,
and the ahc pointer reset.
Clean up the logic in ahc_search_qinfifo that deals with the busy device
table. For some reason it assumed that the only valid time to search
to see if additional lun entries should be checked was if lun 0 matched.
Now we properly itterate through the necessary luns. The busy device
table is used to detect invalid reselections, so a device would have had
to perform an unexpected reselection for this to cause problems. Further,
all luns are collapsed to a single entry unless we have external ram
with large SCBs (3940AU models) so the chance of this happening was
rather remote.
Clean up the logic for dealing with the untagged queues. We now set a
flag in the SCB that indicates that it is on the untagged queue instead
of inferring this from the type and setup of the CCB pased into us by
CAM.
In ahc_timeout(), don't print the path of the SCB until the controller
is paused and we are sure that it has not completed yet. This, in
conjunction with referencing the ahc pointer in the SCB rather than
the CCB in the SCB avoids panics in the case of a timedout scb completing
just before the timeout handler runs. This turns out to be guaranteed
if interrupt delivery is failing, as we run our interrupt handler to
flush any "just missed events" when a timeout occurs. Mention the
likelyhood of broken interrupts if a timedout SCB is completed by
our call to ahc_intr().
a resource shortage occurs, freeze our queue and then set the resource
shortage flag while the controller data structure is locked. The old
code did these in the wrong order potentially allowing our interrupt
handler to release the queue and clear the flag before the freeze
ever occurred.
aic7xxx.c:
In target mode, reset the TQINPOS on every restart of the sequencer.
In the past we did this only during a bus reset, but there are other
reasons the sequencer might be reset.
In ahc_clear_critical_section(), disable pausing chip interrupts while
we step the sequencer out of a critical section. This avoids the
possibility of getting a pausing interrupt (unexpected bus free,
bus reset, etc.) that would prevent the sequencer from stepping.
Send the correct async notifications in the case of a BDR or bus reset.
In ahc_loadseq(), correct the calculation of our critical sections.
In some cases, the sections would be larger than needed.
aic7xxx.h:
Remove an unused SCB flag.
aic7xxx.seq:
MK_MESSAGE is cleared by the kernel, there is no need to waste
a sequencer instruction clearing it.
aic7xxx_freebsd.c:
Go through the host message loop instead of issuing a single
byte message directly in the ahc_timeout() case where we
are currently on the bus to the device. The effect is the same,
but this way we get a nice printf saying that an expected BDR
was delivered instead of an unexpected bus free.
If we are requeuing an SCB for an error recovery action, be sure
to set the DISCONNECTED flag in the in-core version of the SCB.
This ensures that, in the SCB-paging case, the sequencer will
still recognize the reselection as valid even if the version
of the SCB with this flag set was never previously paged out
to system memory. In the non-paging case, set the MK_MESSAGE
flag in SCB_CONTROL directly.
aic7xxx_pci.c:
Enable the Memeory Write and Invalidate bug workaround for
all aic7880 chips with revs < 1. This bug is rarely triggered
in FreeBSD as most transfers end on cache-aligned boundaries,
but a recheck of my references indicates that these chips
are affected.
non-LVD controllers. We only need to take special action on the qinfifo
if we have dectected the case of an SCB that has been removed from the
qinfifo but has not been fully DMAed to the controller. A missing
conditional caused this code to be executed every time an SCB was
aborted from the queue
Don't attempt to print the path of an SCB that has been freed.
Clean up the traversal of the pending scb list in
ahc_update_pending_syncrates(). This has no functional change.
Correct ahc_timeout()'s requeing of a timedout SCB to effect a
recovery action. We now use ahc_qinfifo_requeue() and a
new function ahc_qinfifo_count() instead of performing the
requeue inline. The old code did not conform to the new qinfifo
method.
Clear the timedout SCB from the disconnected list. This ensures
that the SCB_NEXT field is free to be used for queuing us to
the qinfifo.
In ahc_search_qinfifo, the SEARCH_REMOVE case must also handle
an SCB that has been removed from the QINFIFO but not yet been
fully dmaed to the card.
Correct locking for ahc_get_scb() calls.
Set SCB syncrate settings in ahc_execute_scb() to avoid a race
condition that could allow a newly queued SCB to be missed
by ahc_update_pending_syncrates().
When notifying the system of transfer negotiation updates, only
set the valid bits for tagged queuing and disconnection if the
path is fully qualified. Sync/Wide settins apply to all luns
of a target, but tagged queuing and disconnection may change
on a per-lun basis.
Add missing ahc_unlock() calls in ahc_timeout() for the target
mode case.
of two (one to access the circular input fifo, the other to get the SCB).
This costs us a command slot so the driver can now only queue 254
simultaneous commands.
Have the kernel driver honor critical sections in sequencer code.
When prefetching S/G segments only pull a cacheline's worth but
never less than two elements. This reduces the impact of the
prefetch on the main data transfer when compared to the 128
byte fetches the driver used to do.
Add "bootverbose" logging for transfer negotiations.
Correct a bug in ahc_set_syncrate() that would prevent an update
of the sync parameters if only the ppr_options had changed.
Correct locking for calls to ahc_free_scb(). ahc_free_scb() is no
longer protected internally to simplify ports to other platforms.
Make sure we unfreeze our SIMQ if a resource shortage has occurred
and an SCB is been freed.
ahc_pci.c:
Turn on cacheline streaming for all controllers that support it.
Clarify diagnostic messages about PCI interrupts.
Add support for constructing a table of critical section regions in
the firmware image. The kernel driver will soon have support for
single stepping the sequencer outside of a critical region prior
to starting exception handling.
ahc_pci.c:
Bring back the AHC_ALLOW_MEMIO option at least until the
memory mapped I/O problem on the SuperMicro 370DR3 is
better understood.
aic7xxx.c:
If we see a spurious SCSI interrupt, attempt to clear it and
continue by unpausing the sequencer.
Change the interface to ahc_send_async(). Some async messages
need to be broadcast to all the luns of a target or all the
targets of a bus. This is easier to achieve by passing explicit
channel, target, and lun parameters instead of attempting to
construct a device info struct to match.
Filter the sync parameters for the PPR message in exactly the
same way we do for an old fashioned SDTR message.
Correct some typos and correct a panic message.
Handle rejected PPR messages.
In ahc_handle_msg_reject(), let ahc_build_transfer_msg() build
any additional transfer messages instead of doing this inline.
aic7xxx.h:
Increase the size of both msgout_buf and msgin_buf to
better accomodate PPR messages.
aic7xxx_freebsd.c:
Update for change in ahc_send_async() parameters.
aic7xxx_freebsd.h
Update for change in ahc_send_async() parameters.
Honor AHC_ALLOW_MEMIO.
aic7xxx_pci.c:
Check the error register before going into full blown PCI
interrupt handling. This avoids a few costly PCI configuration
space reads when we run our PCI interrupt handler because another
device sharing our interrupt line is more active than we are.
Also unpause the sequencer after processing a PCI interrupt.
sequencer files. Different platforms place the included files in different
locations and it is easier to modify the include path passed as arguments
to the assembler than adding #ifdef support to the assembler.
Remove a spurious 'nop' instruction.
ahc->unit is depricated and will be going away as soon as the Linux
driver catches up. In the FreeBSD case, it is always initialized to 0
and this caused some strangeness in registering multiple ahc controllers
with CAM.
Noticed by: Tor.Egge@fast.no
Separate our platform independent hooks from core driver functionality
shared between platforms (FreeBSD and Linux at this time).
Add sequencer workarounds for several chip->chipset interactions.
Correct external SCB corruption problem on aic7895 based cards (3940AUW).
Lots of cleanups resulting from the port to another OS.
the drivers.
* Remove legacy inx/outx support from chipset and replace with macros
which call busspace.
* Rework pci config accesses to route through the pcib device instead of
calling a MD function directly.
With these changes it is possible to cleanly support machines which have
more than one independantly numbered PCI busses. As a bonus, the new
busspace implementation should be measurably faster than the old one.
the scratch RAM for data normally found in the SEEPROM (presumably in the
event that the SEEPROM is unavailable or can't be read). This code causes
a spontaneous reboot on monster.osd.bsdi.com, which has an embedded aic7880
controller. The problem appears to happen either when it writes to the
SCBPTR port and then reads from the SCB_CONTROL port. Somewhere during
the inb/outb operations, the system has a heart attack and restarts.
This code looks very suspicious, particularly since it has unconditionalized
debug mesages such as "Got here!" and "And it even worked!". With this
block #ifdef'ed out, the machine boots and runs properly. I stronly suggest
that it stay #ifdef'ed out until it's properly tested.
Disable "cache line streaming" for aic7890/91 Rev A chips. I
have never seen these chips fail using this feature, but
some of Adaptec's regression tests have.
Explicitly set "cache line streaming" to on for aic7896/97
chips. This was happening before, but this documents the
fact that these chips will not function correctly without
CACHETHEEN set.
aic7xxx.h:
Add new bug types.
Fix a typo in a comment.
aic7xxx.reg:
Add a definition for the SHVALID bit in SSTAT3 for Ultra2/3
chips. This bit inicates whether the bottom most (current)
element in the S/G fifo has exhausted its data count.
aic7xxx.seq:
Be more careful in how we turn off the secondary DMA channel.
Being less careful may hang the PCI bus arbitor that negotiates
between the two DMA engines.
Remove an unecessary and incorrect flag set operation in
the overrun case.
On Ultra2/3 controllers, clear the dma FIFO before starting
to handle an overrun. We don't want any residual bytes from
the beginning of the overrun to cause the code that shuts
down the DMA engine from hanging because the FIFO is not
(and never will be) empty.
If the data fifo is empty by the time we notice that a
read transaction has completed, there is no need to
hit the flush bit on aic7890/91 hardware that will not
perform an auto-flush. Skip some cycles by short circuiting
the manual flush code in this case.
When transitioning out of data phase, make sure that we
have the next S/G element loaded for the following
reconnect if there is more work to do. The code
would do this in most cases before, but there was
a small window where the current S/G element could
be exhausted before our fetch of the next S/G element
completed. Since the S/G fetch is already initiated
at this point, it makes sense to just wait for the
segment to arrive instead of incuring even more latency
by canceling the fetch and initiating it later.
Fast path the end of data phase handling for the last
S/G segment. In the general case, we might have
worked ahead a bit by stuffing the S/G FIFO with
additional segments. If we stop before using them
all, we need to fixup our location in the S/G stream.
Since we can't work past the last S/G segment, no
fixups are ever required if we stop somewhere in
that final segment.
Fix a little buglet in the target mode dma bug handler.
We were employing the workaround in all cases instead
of only for the chips that require it.
Fix the cause of SCB timeouts and possible "lost data"
during read operations on the aic7890. When sending
a data on any Ultra2/3 controller, the final segment
must be marked as such so the FIFO will be flushed and
cleaned up correctly when the transfer is ended. We
failed to do this for the CDB transfer and so, if
the target immediately transfered from command to data
phase without an intervening disconnection, the first
segment transferred would be any residual bytes from
the cdb transfer. The Ultra160 controllers for some
reason were not affected by this problem.
Many Thanks to Tor Egge for bringing the aic7890 problem
to my attention, providing analysis, as well as a mechanism
to reproduce the problem.
didn't bother to send a saved data pointers after the last transfer,
is not recorded in sgptr. This was only a problem if the target
reported non-zero status as we always check the residual in that case.
Correct the BUILD_TCL macro. It was placing the target id
in the wrong bits. This was only an issue for adapters that
do not perform SCB paging (aha-3940AUW for instance).
Don't bother inlining ahc_index_busy_tcl. It is never
used in a performance critical path and is a bit chunky.
Correct ahc_index_busy_tcl to deal with "busy target tables"
embedded in the latter half of 64byte SCBs.
Don't initialize the busy target table to its empty state
until after we have finished extracting configuration
information from chip SRAM. In the common case of using
16 bytes of chip SRAM to do untagged target lookups,
we were trashing the last 8 targets configuration data.
(actually only target 8 because of the bug in the
BUILD_TCL macro).
Cram the "bus reset delivered" message back under bootverbose.
Fix the cleanup of the SCB busy target table when aborting
commands. If the lun is wildcarded, we must loop through
all possible luns.
aic7xxx.h:
Only bother supporting 64 luns right now. It doesn't seem
like either this driver or any peripherals will be doing
information unit transfers (where the lun number is a
32 bit integer) any time soon.
aic7xxx.seq:
Fix support for the aic7895. We must flush the data
FIFO if performing a manual transfer that is not
a multiple of 8 bytes. We were doing this quite
regularly for embedded cdbs.
Manaually flush the fifo on earlier adapters when
dealing with embedded cdbs too. We were stuffing
the FIFO with 16 bytes instead, but triggering
the flush is more efficient and allows us to
remove two instructions from the "copy_to_fifo"
routine.
other systems.
o Normalize copyright text.
o Clean up probe code function interfaces by passing around a single
structure of common arguments instead of passing "too many" args
in each function call.
o Add support for the AAA-131 as a SCSI adapter.
o Add support for the AHA-4944 courtesy of "Matthew N. Dodd" <winter@jurai.net
o Correct manual termination support for PCI cards. The bit definitions
for manual termination control in the SEEPROM were incorrect.
o Add support for extracting NVRAM information from SCB 2 for BIOSen
that use this mechanism to pass this data to OS drivers.
o Properly set the STPWLEVEL bit in PCI config space based on the
setting in an SEEPROM.
o Go back to useing 32byte SCBs for all controllers. The current
firmware allows us to embed 12byte cdbs on all controllers in
a 32byte SCB, and larger cdbs are rarely used, so it is a
better use of this space to offer more SCBs (32).
o Add support for U160 transfers.
o Add an idle loop executed during data transfers that prefetches
S/G segments on controllers that have a secondary DMA engine
(aic789X).
o Improve the performance of reselections by avoiding an extra
one byte DMA in the case of an SCB lookup miss for the reselecting
target. We now keep a 16byte "untagged target" array on the card
for dealing with untagged reselections. If the controller has
external SCB ram and can support 64byte SCBs, then we use an
"untagged target/lun" array to maximize concurrency. Without
external SCB ram, the controller is limited to one untagged
transaction per target, auto-request sense operations excluded.
o Correct the setup of the STPWEN bit in SXFRCTL1. This control
line is tri-stated until set to one, so set it to one and then
set it to the desired value.
o Add tagged queuing support to our target role implementation.
o Handle the common cases of the ignore wide residue message
in firmware.
o Add preliminary support for 39bit addressing.
o Add support for assembling on big-endian machines. Big-endian
support is not complete in the driver.
o Correctly remove SCBs in the waiting for selection queue when
freezing a device queue.
o Now that we understand more about the autoflush bug on the
aic7890, only use the workaround on devices that need it.
o Add a workaround for the "aic7890 hangs the system when you
attempt to pause it" problem. We can now pause the aic7890
safely regardless of what instruction it is executing.
negotiation features (DT, ULTRA2, ULTRA, FAST). The offsets
where not properly updated when the DT entry was added and so
the driver could attempt to negotiate a speed faster than that
supported by the target device or even requested by the user
via SCSI-Select settings. *
o Update the target mode incoming command queue kernel index value
ever 128 commands instead of 32. This means that the kernel will
always try to keep its index (as seen on the card - the kernel may
actually have cleared more space) 128 commands ahead of where the
sequencer is adding entries.
o Use the HS_MAILBOX register instead of the KERNEL_TQINPOS location
in SRAM to indicate the kernel's target queue possition on Ultra2
cards. This avoids the "pause bug" on these cards and also turns
out to be much more efficient.
o When enabling or disabling a particular target id for target mode,
make sure that the taret id in the SCSIID register does not
reference an ID that is not to receive target selections. This
is only an issue on chips that support the multiple target id
feature where the value in SCSIID will still affect selection
behavior regardless of the values in the target id bit field
registers.
o Remove some target mode debugging printfs.
o Make sure that the sense length reported in ATIO commands is
always zero. This driver does not, yet, report HBA generated
sense information for accepted commands.
o Honor the CAM_TIME_INFINITY and CAM_TIME_DEFAULT values for
the CCB timeout field.
o Make the driver compile with AHC_DEBUG again.
* Noticed by: Andrew Gallatin<gallatin@cs.duke.edu>
for optimizing the unpause operation no-longer exist, and this is much
safer.
When restarting the sequencer, reconstitute the free SCB list on the card.
This deals with a single instruction gap between marking the SCB as free
and actually getting it onto the free list.
Reduce the number of transfer negotiations that occur. In the past, we
renegotiated after every reported check condition status. This ensures
that we catch devices that have unexpectidly reset. In this situation,
the target will always report the check condition before performing a
data-phase. The new behavior is to renegotiate for any check-condition where
the residual matches the orginal data-length of the command (including
0 length transffers). This avoids renegotiations during things like
variable tape block reads, where the check condition is reported only
to indicate the residual of the read.
Revamp the parity error detection logic. We now properly report and
handle injected parity errors in all phases. The old code used to hang
on message-in parity errors.
Correct the reporting of selection timeout errors to the XPT. When
a selection timeout occurs, only the currently selecting command
is flagged with SELTO status instead of aborting all currently active
commands to that target.
Fix flipped arguments in ahc_match_scb and in some of the callers of this
routine. I wish that gcc allowed you to request warnings for enums passed
as ints.
Make ahc_find_msg generically handle all message types.
Work around the target mode data-in wideodd bug in all non-U2 chips.
We can now do sync-wide target mode transfers in target mode across the
hole product line.
Use lastphase exclusively for handling timeouts. The current phase
doesn't take the bus free state into account.
Fix a bug in the timeout handler that could cause corruption of the
disconnected list.
When sending an embedded cdb to a target, ensure that we start on a
quad word boundary in the data-fifo. It seems that unaligned stores
do not work correctly.
Collect together the components of several drivers and export eisa from
the i386-only area (It's not, it's on some alphas too). The code hasn't
been updated to work on the Alpha yet, but that can come later.
Repository copies were done a while ago.
Moving these now keeps them in consistant place across the 4.x series
as the newbusification progresses.
Submitted by: mdodd
makes it a little easier to notice that parity checking an 8bit sram
isn't working.
Turn on scb and internal data-path parity checking for all pci chips types.
We were only doing this for ultra2 chips.
After clearing the parity interrupt status, clear the BRKADRINT. This
avoids seeing a bogus BRKADRINT interrupt after external SCB probing
once normal interrupts are enabled.
93cx6.c:
Make the SRAM dump output a little prettier.
aic7xxx.c:
Store all SG entries into our SG array in kernel space.
This makes data-overrun and other error reporting more
useful as we can dump all SG entries. In the past,
we only stored the SG entries that the sequencer might
need to access, which meant we skipped the first element
that is embedded into the SCB.
Add a table of chip strings and replace ugly switch
statements with table lookups.
Add a table with bus phase strings and message reponses
to parity errors in those phases. Use the table to
pretty print bus phase messages as well as collapse
another switch statement.
Fix a bug in target mode that could cause us to unpause
the sequencer early in bus reset processing.
Add the 80MHz/DT mode into our syncrate table. This
rate is not yet used or enabled.
Correct some comments, clean up some code...
aic7xxx.h:
Add U160 controller feature information.
Add some more bit fields for various SEEPROM formats.
aic7xxx.reg:
Add U160 register and register bit definitions.
aic7xxx.seq:
Make phasemis state tracking more straight forward. This
avoids the consumption of SINDEX which is a very useful register.
For the U160 chips, you must use the 'mov' instruction to
update DFCNTRL. Using 'or' to set the PRELOADED bit is
completely ineffective.
At the end of the command phase, wair for our ACK signal
to de-assert before disabling the SCSI dma engine. For
slow devices, this avoids clearing the ACK before the
other end has had a chance to see it and lower REQ.