doesn't give them enough stack to do much before blowing away the pcb.
This adds MI and MD code to allow the allocation of an alternate kstack
who's size can be speficied when calling kthread_create. Passing the
value 0 prevents the alternate kstack from being created. Note that the
ia64 MD code is missing for now, and PowerPC was only partially written
due to the pmap.c being incomplete there.
Though this patch does not modify anything to make use of the alternate
kstack, acpi and usb are good candidates.
Reviewed by: jake, peter, jhb
request structure.
- Re-optimize the case of utrace being disabled by doing an explicit
KTRPOINT check instead of relying on the one in ktr_getrequest() so that
we don't waste time on a malloc in the non-tracing case.
- Change utrace() to return an error if the copyin() fails. Before it
would just ignore the request but still return success. This last is
a change in behavior and can be backed out if necessary.
transfer to a malloc'd buffer and use that bufer for the ktrace event.
This means that genio ktrace events no longer need to be synchronous.
- Now that ktr_buffer isn't overloaded to sometimes point to a cached uio
pointer for genio requests and always points to a malloc'd buffer if not
NULL, free the buffer in ktr_freerequest() instead of in
ktr_writerequest(). This closes a memory leak for ktrace events that
used a malloc'd buffer that had their vnode ripped out from under them
while they were on the todo list.
Suggested by: bde (1, in principle)
- Rename kern.ktrace_request_pool tunable/sysctl to
kern.ktrace.request_pool.
- Add a variable to control the max amount of data to log for genio events.
This variable is tunable via the tunable/sysctl kern.ktrace.genio_size
and defaults to one page.
for mac_check_vnode_{poll,read,stat,write}(). Pass in fp->f_cred
when calling these checks with a struct file available. Otherwise,
pass NOCRED. All currently MAC policies use active_cred, but
could now offer the cached credential semantic used for the base
system security model.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
mac_check_vnode_poll(), mac_check_vnode_read(), mac_check_vnode_write().
This improves the consistency with other existing vnode checks, and
allows policies to avoid implementing switch statements to determine
what operations they do and do not want to authorize.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
other references to that vnode as a trace vnode in other processes as well
as in any pending requests on the todo list. Thus, it is possible for a
ktrace request structure to have a NULL ktr_vp when it is destroyed in
ktr_freerequest(). We shouldn't call vrele() on the vnode in that case.
Reported by: bde
kernel access control.
Instrument the ktrace write operation so that it invokes the MAC
framework's vnode write authorization check.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
operations to dump a ktrace event out to an output file are now handled
asychronously by a ktrace worker thread. This enables most ktrace events
to not need Giant once p_tracep and p_traceflag are suitably protected by
the new ktrace_lock.
There is a single todo list of pending ktrace requests. The various
ktrace tracepoints allocate a ktrace request object and tack it onto the
end of the queue. The ktrace kernel thread grabs requests off the head of
the queue and processes them using the trace vnode and credentials of the
thread triggering the event.
Since we cannot assume that the user memory referenced when doing a
ktrgenio() will be valid and since we can't access it from the ktrace
worker thread without a bit of hassle anyways, ktrgenio() requests are
still handled synchronously. However, in order to ensure that the requests
from a given thread still maintain relative order to one another, when a
synchronous ktrace event (such as a genio event) is triggered, we still put
the request object on the todo list to synchronize with the worker thread.
The original thread blocks atomically with putting the item on the queue.
When the worker thread comes across an asynchronous request, it wakes up
the original thread and then blocks to ensure it doesn't manage to write a
later event before the original thread has a chance to write out the
synchronous event. When the original thread wakes up, it writes out the
synchronous using its own context and then finally wakes the worker thread
back up. Yuck. The sychronous events aren't pretty but they do work.
Since ktrace events can be triggered in fairly low-level areas (msleep()
and cv_wait() for example) the ktrace code is designed to use very few
locks when posting an event (currently just the ktrace_mtx lock and the
vnode interlock to bump the refcoun on the trace vnode). This also means
that we can't allocate a ktrace request object when an event is triggered.
Instead, ktrace request objects are allocated from a pre-allocated pool
and returned to the pool after a request is serviced.
The size of this pool defaults to 100 objects, which is about 13k on an
i386 kernel. The size of the pool can be adjusted at compile time via the
KTRACE_REQUEST_POOL kernel option, at boot time via the
kern.ktrace_request_pool loader tunable, or at runtime via the
kern.ktrace_request_pool sysctl.
If the pool of request objects is exhausted, then a warning message is
printed to the console. The message is rate-limited in that it is only
printed once until the size of the pool is adjusted via the sysctl.
I have tested all kernel traces but have not tested user traces submitted
by utrace(2), though they should work fine in theory.
Since a ktrace request has several properties (content of event, trace
vnode, details of originating process, credentials for I/O, etc.), I chose
to drop the first argument to the various ktrfoo() functions. Currently
the functions just assume the event is posted from curthread. If there is
a great desire to do so, I suppose I could instead put back the first
argument but this time make it a thread pointer instead of a vnode pointer.
Also, KTRPOINT() now takes a thread as its first argument instead of a
process. This is because the check for a recursive ktrace event is now
per-thread instead of process-wide.
Tested on: i386
Compiles on: sparc64, alpha
pointer instead of a proc pointer and require the process pointed to
by the second argument to be locked. We now use the thread ucred reference
for the credential checks in p_can*() as a result. p_canfoo() should now
no longer need Giant.
general cleanup of the API. The entire API now consists of two functions
similar to the pre-KSE API. The suser() function takes a thread pointer
as its only argument. The td_ucred member of this thread must be valid
so the only valid thread pointers are curthread and a few kernel threads
such as thread0. The suser_cred() function takes a pointer to a struct
ucred as its first argument and an integer flag as its second argument.
The flag is currently only used for the PRISON_ROOT flag.
Discussed on: smp@
kern/kern_descrip.c:
Aquire Giant in fdrop_locked when file refcount hits zero, this removes
the requirement for the caller to own Giant for the most part.
kern/kern_ktrace.c:
Aquire Giant in ktrgenio, simplifies locking in upper read/write syscalls.
kern/vfs_bio.c:
Aquire Giant in bwillwrite if needed.
kern/sys_generic.c
Giant pushdown, remove Giant for:
read, pread, write and pwrite.
readv and writev aren't done yet because of the possible malloc calls
for iov to uio processing.
kern/sys_socket.c
Grab giant in the socket fo_read/write functions.
kern/vfs_vnops.c
Grab giant in the vnode fo_read/write functions.
New locks are:
- pgrpsess_lock which locks the whole pgrps and sessions,
- pg_mtx which protects the pgrp members, and
- s_mtx which protects the session members.
Please refer to sys/proc.h for the coverage of these locks.
Changes on the pgrp/session interface:
- pgfind() needs the pgrpsess_lock held.
- The caller of enterpgrp() is responsible to allocate a new pgrp and
session.
- Call enterthispgrp() in order to enter an existing pgrp.
- pgsignal() requires a pgrp lock held.
Reviewed by: jhb, alfred
Tested on: cvsup.jp.FreeBSD.org
(which is a quad-CPU machine running -current)
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
Instead introduce the [M] prefix to existing keywords. e.g.
MSTD is the MP SAFE version of STD. This is prepatory for a
massive Giant lock pushdown. The old MPSAFE keyword made
syscalls.master too messy.
Begin comments MP-Safe procedures with the comment:
/*
* MPSAFE
*/
This comments means that the procedure may be called without
Giant held (The procedure itself may still need to obtain
Giant temporarily to do its thing).
sv_prepsyscall() is now MP SAFE and assumed to be MP SAFE
sv_transtrap() is now MP SAFE and assumed to be MP SAFE
ktrsyscall() and ktrsysret() are now MP SAFE (Giant Pushdown)
trapsignal() is now MP SAFE (Giant Pushdown)
Places which used to do the if (mtx_owned(&Giant)) mtx_unlock(&Giant)
test in syscall[2]() in */*/trap.c now do not. Instead they
explicitly unlock Giant if they previously obtained it, and then
assert that it is no longer held to catch broken system calls.
Rebuild syscall tables.
The p_can(...) construct was a premature (and, it turns out,
awkward) abstraction. The individual calls to p_canxxx() better
reflect differences between the inter-process authorization checks,
such as differing checks based on the type of signal. This has
a side effect of improving code readability.
o Replace direct credential authorization checks in ktrace() with
invocation of p_candebug(), while maintaining the special case
check of KTR_ROOT. This allows ktrace() to "play more nicely"
with new mandatory access control schemes, as well as making its
authorization checks consistent with other "debugging class"
checks.
o Eliminate "privused" construct for p_can*() calls which allowed the
caller to determine if privilege was required for successful
evaluation of the access control check. This primitive is currently
unused, and as such, serves only to complicate the API.
Approved by: ({procfs,linprocfs} changes) des
Obtained from: TrustedBSD Project
real uid, saved uid, real gid, and saved gid to ucred, as well as the
pcred->pc_uidinfo, which was associated with the real uid, only rename
it to cr_ruidinfo so as not to conflict with cr_uidinfo, which
corresponds to the effective uid.
o Remove p_cred from struct proc; add p_ucred to struct proc, replacing
original macro that pointed.
p->p_ucred to p->p_cred->pc_ucred.
o Universally update code so that it makes use of ucred instead of pcred,
p->p_ucred instead of p->p_pcred, cr_ruidinfo instead of p_uidinfo,
cr_{r,sv}{u,g}id instead of p_*, etc.
o Remove pcred0 and its initialization from init_main.c; initialize
cr_ruidinfo there.
o Restruction many credential modification chunks to always crdup while
we figure out locking and optimizations; generally speaking, this
means moving to a structure like this:
newcred = crdup(oldcred);
...
p->p_ucred = newcred;
crfree(oldcred);
It's not race-free, but better than nothing. There are also races
in sys_process.c, all inter-process authorization, fork, exec, and
exit.
o Remove sigio->sio_ruid since sigio->sio_ucred now contains the ruid;
remove comments indicating that the old arrangement was a problem.
o Restructure exec1() a little to use newcred/oldcred arrangement, and
use improved uid management primitives.
o Clean up exit1() so as to do less work in credential cleanup due to
pcred removal.
o Clean up fork1() so as to do less work in credential cleanup and
allocation.
o Clean up ktrcanset() to take into account changes, and move to using
suser_xxx() instead of performing a direct uid==0 comparision.
o Improve commenting in various kern_prot.c credential modification
calls to better document current behavior. In a couple of places,
current behavior is a little questionable and we need to check
POSIX.1 to make sure it's "right". More commenting work still
remains to be done.
o Update credential management calls, such as crfree(), to take into
account new ruidinfo reference.
o Modify or add the following uid and gid helper routines:
change_euid()
change_egid()
change_ruid()
change_rgid()
change_svuid()
change_svgid()
In each case, the call now acts on a credential not a process, and as
such no longer requires more complicated process locking/etc. They
now assume the caller will do any necessary allocation of an
exclusive credential reference. Each is commented to document its
reference requirements.
o CANSIGIO() is simplified to require only credentials, not processes
and pcreds.
o Remove lots of (p_pcred==NULL) checks.
o Add an XXX to authorization code in nfs_lock.c, since it's
questionable, and needs to be considered carefully.
o Simplify posix4 authorization code to require only credentials, not
processes and pcreds. Note that this authorization, as well as
CANSIGIO(), needs to be updated to use the p_cansignal() and
p_cansched() centralized authorization routines, as they currently
do not take into account some desirable restrictions that are handled
by the centralized routines, as well as being inconsistent with other
similar authorization instances.
o Update libkvm to take these changes into account.
Obtained from: TrustedBSD Project
Reviewed by: green, bde, jhb, freebsd-arch, freebsd-audit
other "system" header files.
Also help the deprecation of lockmgr.h by making it a sub-include of
sys/lock.h and removing sys/lockmgr.h form kernel .c files.
Sort sys/*.h includes where possible in affected files.
OK'ed by: bde (with reservations)
credential structure, ucred (cr->cr_prison).
o Allow jail inheritence to be a function of credential inheritence.
o Abstract prison structure reference counting behind pr_hold() and
pr_free(), invoked by the similarly named credential reference
management functions, removing this code from per-ABI fork/exit code.
o Modify various jail() functions to use struct ucred arguments instead
of struct proc arguments.
o Introduce jailed() function to determine if a credential is jailed,
rather than directly checking pointers all over the place.
o Convert PRISON_CHECK() macro to prison_check() function.
o Move jail() function prototypes to jail.h.
o Emulate the P_JAILED flag in fill_kinfo_proc() and no longer set the
flag in the process flags field itself.
o Eliminate that "const" qualifier from suser/p_can/etc to reflect
mutex use.
Notes:
o Some further cleanup of the linux/jail code is still required.
o It's now possible to consider resolving some of the process vs
credential based permission checking confusion in the socket code.
o Mutex protection of struct prison is still not present, and is
required to protect the reference count plus some fields in the
structure.
Reviewed by: freebsd-arch
Obtained from: TrustedBSD Project
of explicit calls to lockmgr. Also provides macros for the flags
pased to specify shared, exclusive or release which map to the
lockmgr flags. This is so that the use of lockmgr can be easily
replaced with optimized reader-writer locks.
- Add some locking that I missed the first time.
because it only takes a struct tag which makes it impossible to
use unions, typedefs etc.
Define __offsetof() in <machine/ansi.h>
Define offsetof() in terms of __offsetof() in <stddef.h> and <sys/types.h>
Remove myriad of local offsetof() definitions.
Remove includes of <stddef.h> in kernel code.
NB: Kernelcode should *never* include from /usr/include !
Make <sys/queue.h> include <machine/ansi.h> to avoid polluting the API.
Deprecate <struct.h> with a warning. The warning turns into an error on
01-12-2000 and the file gets removed entirely on 01-01-2001.
Paritials reviews by: various.
Significant brucifications by: bde
int p_can(p1, p2, operation, privused)
which allows specification of subject process, object process,
inter-process operation, and an optional call-by-reference privused
flag, allowing the caller to determine if privilege was required
for the call to succeed. This allows jail, kern.ps_showallprocs and
regular credential-based interaction checks to occur in one block of
code. Possible operations are P_CAN_SEE, P_CAN_SCHED, P_CAN_KILL,
and P_CAN_DEBUG. p_can currently breaks out as a wrapper to a
series of static function checks in kern_prot, which should not
be invoked directly.
o Commented out capabilities entries are included for some checks.
o Update most inter-process authorization to make use of p_can() instead
of manual checks, PRISON_CHECK(), P_TRESPASS(), and
kern.ps_showallprocs.
o Modify suser{,_xxx} to use const arguments, as it no longer modifies
process flags due to the disabling of ASU.
o Modify some checks/errors in procfs so that ENOENT is returned instead
of ESRCH, further improving concealment of processes that should not
be visible to other processes. Also introduce new access checks to
improve hiding of processes for procfs_lookup(), procfs_getattr(),
procfs_readdir(). Correct a bug reported by bp concerning not
handling the CREATE case in procfs_lookup(). Remove volatile flag in
procfs that caused apparently spurious qualifier warnigns (approved by
bde).
o Add comment noting that ktrace() has not been updated, as its access
control checks are different from ptrace(), whereas they should
probably be the same. Further discussion should happen on this topic.
Reviewed by: bde, green, phk, freebsd-security, others
Approved by: bde
Obtained from: TrustedBSD Project
the gating of system calls that cause modifications to the underlying
filesystem. The gating can be enabled by any filesystem that needs
to consistently suspend operations by adding the vop_stdgetwritemount
to their set of vnops. Once gating is enabled, the function
vfs_write_suspend stops all new write operations to a filesystem,
allows any filesystem modifying system calls already in progress
to complete, then sync's the filesystem to disk and returns. The
function vfs_write_resume allows the suspended write operations to
begin again. Gating is not added by default for all filesystems as
for SMP systems it adds two extra locks to such critical kernel
paths as the write system call. Thus, gating should only be added
as needed.
Details on the use and current status of snapshots in FFS can be
found in /sys/ufs/ffs/README.snapshot so for brevity and timelyness
is not included here. Unless and until you create a snapshot file,
these changes should have no effect on your system (famous last words).
after the acquisition of any advisory locks. This fix corrects a case
in which a process tries to open a file with a non-blocking exclusive
lock. Even if it fails to get the lock it would still truncate the
file even though its open failed. With this change, the truncation
is done only after the lock is successfully acquired.
Obtained from: BSD/OS
instead of a struct iovec * array and int len. Get rid of stupidly trying
to allocate all of the memory and copyin()ing the entire iovec[], and
instead just do the proper VOP_WRITE() in ktrwrite() using a copy of
the struct uio that the syscall originally used.
This solves the DoS which could easily be performed; to work around the
DoS, one could also remove "options KTRACE" from the kernel. This is
a very strong MFC candidate for 4.1.
Found by: art@OpenBSD.org
Alot of the code in sys/kern directly accesses the *Q_HEAD and *Q_ENTRY
structures for list operations. This patch makes all list operations
in sys/kern use the queue(3) macros, rather than directly accessing the
*Q_{HEAD,ENTRY} structures.
This batch of changes compile to the same object files.
Reviewed by: phk
Submitted by: Jake Burkholder <jake@checker.org>
PR: 14914
-----------------------------
The core of the signalling code has been rewritten to operate
on the new sigset_t. No methodological changes have been made.
Most references to a sigset_t object are through macros (see
signalvar.h) to create a level of abstraction and to provide
a basis for further improvements.
The NSIG constant has not been changed to reflect the maximum
number of signals possible. The reason is that it breaks
programs (especially shells) which assume that all signals
have a non-null name in sys_signame. See src/bin/sh/trap.c
for an example. Instead _SIG_MAXSIG has been introduced to
hold the maximum signal possible with the new sigset_t.
struct sigprop has been moved from signalvar.h to kern_sig.c
because a) it is only used there, and b) access must be done
though function sigprop(). The latter because the table doesn't
holds properties for all signals, but only for the first NSIG
signals.
signal.h has been reorganized to make reading easier and to
add the new and/or modified structures. The "old" structures
are moved to signalvar.h to prevent namespace polution.
Especially the coda filesystem suffers from the change, because
it contained lines like (p->p_sigmask == SIGIO), which is easy
to do for integral types, but not for compound types.
NOTE: kdump (and port linux_kdump) must be recompiled.
Thanks to Garrett Wollman and Daniel Eischen for pressing the
importance of changing sigreturn as well.
the terminating zero by copying MAXCOMLEN + 1 bytes. This fixes the garbage
that occasionally appeared behind the programname when it is at least MAXCOMLEN
bytes long (such as communicator-4.61-bin).
This is a seriously beefed up chroot kind of thing. The process
is jailed along the same lines as a chroot does it, but with
additional tough restrictions imposed on what the superuser can do.
For all I know, it is safe to hand over the root bit inside a
prison to the customer living in that prison, this is what
it was developed for in fact: "real virtual servers".
Each prison has an ip number associated with it, which all IP
communications will be coerced to use and each prison has its own
hostname.
Needless to say, you need more RAM this way, but the advantage is
that each customer can run their own particular version of apache
and not stomp on the toes of their neighbors.
It generally does what one would expect, but setting up a jail
still takes a little knowledge.
A few notes:
I have no scripts for setting up a jail, don't ask me for them.
The IP number should be an alias on one of the interfaces.
mount a /proc in each jail, it will make ps more useable.
/proc/<pid>/status tells the hostname of the prison for
jailed processes.
Quotas are only sensible if you have a mountpoint per prison.
There are no privisions for stopping resource-hogging.
Some "#ifdef INET" and similar may be missing (send patches!)
If somebody wants to take it from here and develop it into
more of a "virtual machine" they should be most welcome!
Tools, comments, patches & documentation most welcome.
Have fun...
Sponsored by: http://www.rndassociates.com/
Run for almost a year by: http://www.servetheweb.com/
it in struct proc instead.
This fixes a boatload of compiler warning, and removes a lot of cruft
from the sources.
I have not removed the /*ARGSUSED*/, they will require some looking at.
libkvm, ps and other userland struct proc frobbing programs will need
recompiled.
Distribute all but the most fundamental malloc types. This time I also
remembered the trick to making things static: Put "static" in front of
them.
A couple of finer points by: bde
changes, so don't expect to be able to run the kernel as-is (very well)
without the appropriate Lite/2 userland changes.
The system boots and can mount UFS filesystems.
Untested: ext2fs, msdosfs, NFS
Known problems: Incorrect Berkeley ID strings in some files.
Mount_std mounts will not work until the getfsent
library routine is changed.
Reviewed by: various people
Submitted by: Jeffery Hsu <hsu@freebsd.org>
This will make a number of things easier in the future, as well as (finally!)
avoiding the Id-smashing problem which has plagued developers for so long.
Boy, I'm glad we're not using sup anymore. This update would have been
insane otherwise.
data pointed at in a ktrace file, if this process is being ktrace'ed.
I'm using this to profile malloc usage.
The advantage is that there is no context around this call, ie, no
open file or socket, so it will work in any process, and you can
decide if you want it to collect data or not.
structs and prototypes for syscalls.
Ifdefed duplicated decentralized declarations of args structs. It's
convenient to have this visible but they are hard to maintain. Some
are already different from the central declarations. 4.4lite2 puts
them in comments in the function headers but I wanted to avoid the
large changes for that.
- Delete redundant declarations.
- Add -Wredundant-declarations to Makefile.i386 so they don't come back.
- Delete sloppy COMMON-style declarations of uninitialized data in
header files.
- Add a few prototypes.
- Clean up warnings resulting from the above.
NB: ioconf.c will still generate a redundant-declaration warning, which
is unavoidable unless somebody volunteers to make `config' smarter.