_thr_suspend_check() which messes sigmask saved in thread structure.
- Don't suspend a thread has force_exit set.
- In pthread_exit(), if there is a suspension flag set, wake up waiting-
thread after setting PS_DEAD, this causes waiting-thread to break loop
in suspend_common().
that there might be starvations, but because we have already locked the
thread, the cpuset settings will always be done before the new thread
does real-world work.
we set scheduling parameters and cpu binding fully in userland, and
because default scheduling policy is SCHED_RR (time-sharing), we set
default sched_inherit to PTHREAD_SCHED_INHERIT, this saves a system
call.
however if current thread is executing cancellation handler, signal
SIGCANCEL may have already been blocked, this is unexpected, unblock the
signal in new thread if this happens.
MFC after: 1 week
the semantics of pthread_mutex_islocked_np() to return true if and only if
the mutex is held by the current thread.
Obviously, change the regression test to match.
MFC after: 2 weeks
locked. This is intended primarily to support the userland equivalent
of the various *_ASSERT_LOCKED() macros we have in the kernel.
MFC after: 2 weeks
loop count.
2. Add function pthread_mutex_setyieldloops_np to turn a mutex's yield
loop count.
3. Make environment variables PTHREAD_SPINLOOPS and PTHREAD_YIELDLOOPS
to be only used for turnning PTHREAD_MUTEX_ADAPTIVE_NP mutex.
doesn't use the default CFLAGS which contain -fno-strict-aliasing.
Until the code is cleaned up, just add -fno-strict-aliasing to the
CFLAGS of these for the tinderboxes' sake, allowing the rest of the
tree to have -Werror enabled again.
fixes a NULL-dereference of curthread when libstdc+ initializes
the exception handling globals on archs we can't use GNU TLS due
to lack of support in binutils 2.15 (i.e. arm and sparc64), yet,
thus making threaded C++ programs compiled with GCC 4.2.1 work
again on these archs.
Reviewed by: davidxu
MFC after: 3 days
to tune pthread mutex performance:
1. LIBPTHREAD_SPINLOOPS
If a pthread mutex is being locked by another thread, this environment
variable sets total number of spin loops before the current thread
sleeps in kernel, this saves a syscall overhead if the mutex will be
unlocked very soon (well written application code).
2. LIBPTHREAD_YIELDLOOPS
If a pthread mutex is being locked by other threads, this environment
variable sets total number of sched_yield() loops before the currrent
thread sleeps in kernel. if a pthread mutex is locked, the current thread
gives up cpu, but will not sleep in kernel, this means, current thread
does not set contention bit in mutex, but let lock owner to run again
if the owner is on kernel's run queue, and when lock owner unlocks the
mutex, it does not need to enter kernel and do lots of work to resume
mutex waiters, in some cases, this saves lots of syscall overheads for
mutex owner.
In my practice, sometimes LIBPTHREAD_YIELDLOOPS can massively improve performance
than LIBPTHREAD_SPINLOOPS, this depends on application. These two environments
are global to all pthread mutex, there is no interface to set them for each
pthread mutex, the default values are zero, this means spinning is turned off
by default.