other typos, ~four grammar gnits, an ironic case of incorrect
parallelization, bad capitalization, an incorrect use of the
infamous slash ('/'), and an unclear sentence.
did not specify an exit code. This implies the use of either a hand-
rolled err() (Bruce's suggestion) or a random error code (my suggestion),
both of which are against the style guidelines. This commit specifies
the correct error code (implicitly). This also changes the error message
to be a little more helpful.
Specifically intended for removing -fschg ("INSTALLFLAGS_EDIT=:S/schg/uchg/")
this makes the NOFSCHG flag redundant. NOFSCHG will still be honoured by
bsd.lib.mk but is valid for buildworld only. NOFSCHG is still implemented in
the old way (ie. _not_ ".if NOFSCHG then { INSTALLFLAGS_EDIT+=:S/schg/,/ }"
to emphasize the fact that NOFSCHG is only supported in a limited
fashion and for buildworld.
The interface and implementation are such that future use of flags such
as sappnd can also be easily removed or altered (perhaps to uappnd).
This commit brought to you by the letters B, D, and E, and the numbers six,
one, thirteen, and three.
- device_print_child() either lets the BUS_PRINT_CHILD
method produce the entire device announcement message or
it prints "foo0: not found\n"
Alter sys/kern/subr_bus.c:bus_generic_print_child() to take on
the previous behavior of device_print_child() (printing the
"foo0: <FooDevice 1.1>" bit of the announce message.)
Provide bus_print_child_header() and bus_print_child_footer()
to actually print the output for bus_generic_print_child().
These functions should be used whenever possible (unless you can
just use bus_generic_print_child())
The BUS_PRINT_CHILD method now returns int instead of void.
Modify everything else that defines or uses a BUS_PRINT_CHILD
method to comply with the above changes.
- Devices are 'on' a bus, not 'at' it.
- If a custom BUS_PRINT_CHILD method does the same thing
as bus_generic_print_child(), use bus_generic_print_child()
- Use device_get_nameunit() instead of both
device_get_name() and device_get_unit()
- All BUS_PRINT_CHILD methods return the number of
characters output.
Reviewed by: dfr, peter
Prompted by docs/12343, in which people seemed to get a little confused.
The original text in the file said:
[...]
# By default we use COM1 as our serial console port *if* we're going to use
# a serial port as our console at all. (0x3E8 = COM2)
#
#BOOT_COMCONSOLE_PORT= 0x3F8
[...]
From what I can make out, some people have assumed that means that if
they just uncomment the BOOT_COMCONSOLE_PORT then it will use COM2:
These same people then assume that "0x3F8" on that line is a typo for
"0x3E8".
What it actually means is that if you uncomment the line then the default
stays as "Ox3F8" (COM1:), and that you have to uncomment the line, *and*
change the value of the variable in order to use COM2:.
So I've made that a little bit clearer. I've also listed the hex values
for COM1: thru COM4:, snarfed from sys/isa/isareg.h.
PR: docs/12343
Submitted by: Bill Grunfelder <wjgrun@dippy.cyberwar.com>
Originally submitted by: Wayne Self <wself@cdrom.com>
Allow a ppp startup option in rc.conf.
Adjust sysinstall so that it appends to the end of ppp.conf
and uses the generated profile to start ppp in auto mode on
boot.
Submitted by: Josef L. Karthauser <joe@uk.FreeBSD.org>
ethernet controllers based on the AIC-6915 "Starfire" controller chip.
There are single port, dual port and quad port cards, plus one 100baseFX
card. All are 64-bit PCI devices, except one single port model.
The Starfire would be a very nice chip were it not for the fact that
receive buffers have to be longword aligned. This requires buffer
copying in order to achieve proper payload alignment on the alpha.
Payload alignment is enforced on both the alpha and x86 platforms.
The Starfire has several different DMA descriptor formats and transfer
mechanisms. This driver uses frame descriptors for transmission which
can address up to 14 packet fragments, and a single fragment descriptor
for receive. It also uses the producer/consumer model and completion
queues for both transmit and receive. The transmit ring has 128
descriptors and the receive ring has 256.
This driver supports both FreeBSD/i386 and FreeBSD/alpha, and uses newbus
so that it can be compiled as a loadable kernel module. Support for BPF
and hardware multicast filtering is included.
track.
The $Id$ line is normally at the bottom of the main comment block in the
man page, separated from the rest of the manpage by an empty comment,
like so;
.\" $Id$
.\"
If the immediately preceding comment is a @(#) format ID marker than the
the $Id$ will line up underneath it with no intervening blank lines.
Otherwise, an additional blank line is inserted.
Approved by: bde
track.
The $Id$ line is normally at the bottom of the main comment block in the
man page, separated from the rest of the manpage by an empty comment,
like so;
.\" $Id$
.\"
If the immediately preceding comment is a @(#) format ID marker than the
the $Id$ will line up underneath it with no intervening blank lines.
Otherwise, an additional blank line is inserted.
Approved by: bde
gigabit ethernet adapters. This includes two single port cards
(single mode and multimode fiber) and two dual port cards (also single
mode and multimode fiber). SysKonnect is currently the only
vendor with a dual port gigabit ethernet NIC.
The ports on dual port adapters are treated as separate network
interfaces. Thus, if you have an SK-9844 dual port SX card, you
should have both sk0 and sk1 interfaces attached. Dual port cards
are implemented using two XMAC II chips connected to a single
SysKonnect GEnesis controller. Hence, dual port cards are really
one PCI device, as opposed to two separate PCI devices connected
through a PCI to PCI bridge. Note that SysKonnect's drivers use
the two ports for failover purposes rather that as two separate
interfaces, plus they don't support jumbo frames. This applies to
their Linux driver too. :)
Support is provided for hardware multicast filtering, BPF and
jumbo frames. The SysKonnect cards support TCP checksum offload
however this feature is not currently enabled (hopefully it will
be once we get checksum offload support).
There are still a few things that need to be implemeted, like
the ability to communicate with the on-board LM80 voltage/temperature
monitor, but I wanted to get the driver under CVS control and into
-current so people could bang on it.
A big thanks for SysKonnect for making all their programming info
for these cards (and for their FDDI and token ring cards) available
without NDA (see www.syskonnect.com).
-DNOFSCHG disables installation of libs with flag schg
GAMEGRP change the group with which games are installed
also organize the binary section into alphebetical order some what..
section. Update some descriptions of the various sections to
reflect that they are valid for section 9 man pages. Add a table
of section numbers and what they are used for.
Don't document non-bugs in the BUGS section, or anywhere else. It
is not a bug to drop data when overloaded. The compile-time tuning
options turned out to be not very useful, and aren't supported
offically.
Documented the not so new option CY_PCI_FASTINTR.
to implement multi-link ppp over more than one ISP with
the ability to lose ISPs without loss of connectivity.
It *requires* that you either have administrative access
to a machine that's already connected to the 'net or at
least know a really nice person that does.
(QIC) written under 2.X may not be easily read under the current
driver without explicitly setting to variable mode or to the blocksize
these tapes were written under 2.X with.
PR: 6681
similar to the PNIC I (supported by the pn driver). In fact, it's really
a Macronix 98715A with wake on LAN support added. According to LinkSys,
the PNIC II was jointly developed by Lite-On and Macronis. I get the
feeling Macronix did most of the work. (The datasheet has the Macronix
logo on it, and is in fact nearly identical to the 98715 datasheet, except
for the extra wake on LAN registers.) In any case, the PNIC II works just
fine with the Macronix driver.
The changes are:
- Move PCI ID for the PNIC II from the pn driver to the mx driver.
- Mention PNIC II support in mx.4.
- Mention PNIC II support in RELNOTES.TXT and HARDWARE.TXT.
- Mention that the 6Mbps turbo adapters are supported in HARDWARE.TXT
and RELNOTES.TXT and the wi.4 man page
- Mention turbo adapters in the wicontrol.8 man page and provide a
complete table of available transmit speed settings
ADMtek AL981 "Comet" chipset. The AL981 is yet another DEC tulip clone,
except with simpler receive filter options. The AL981 has a built-in
transceiver, power management support, wake on LAN and flow control.
This chip performs extremely well; it's on par with the ASIX chipset
in terms of speed, which is pretty good (it can do 11.5MB/sec with TCP
easily).
I would have committed this driver sooner, except I ran into one problem
with the AL981 that required a workaround. When the chip is transmitting
at full speed, it will sometimes wedge if you queue a series of packets
that wrap from the end of the transmit descriptor list back to the
beginning. I can't explain why this happens, and none of the other tulip
clones behave this way. The workaround this is to just watch for the end
of the transmit ring and make sure that al_start() breaks out of its
packet queuing loop and waiting until the current batch of transmissions
completes before wrapping back to the start of the ring. Fortunately, this
does not significantly impact transmit performance.
This is one of those things that takes weeks of analysis just to come
up with two or three lines of code changes.