results in the HAL being built without HAL debugging/diagnostic support,
the module building process needs to be somehow taught to not build AR5416+
NICs if AH_SUPPORT_AR5416 isn't defined in opt_ah.h .
certain instructions in a function prologue or epilogue. DTrace has a
hook into the invalid opcode fault handler that checks whether the fault
was due to an probe and if so, runs the DTrace magic.
Upon returning from an invalid opcode fault caused by a probe, DTrace must
emulate the instruction that was replaced with the invalid opcode and then
return control to the instruction following the invalid opcode.
There were a pair of related bugs in the emulation for the leave
instruction. The leave instruction is used to pop off a stack frame prior
to returning from a function. The emulation for this instruction must
move the trap frame for the invalid opcode fault down the stack to the
bottom of the stack frame that is being removed, and then execute an iret.
At two points in this process, the emulation code was storing values above
the current value of the stack pointer. This opened up a window in which
if we were two take an interrupt, the trap frame for the interrupt would
overwrite the values stored on the stack, causing the system to panic
later.
The first bug was that at one point the emulation code saves the new value
for $esp above the current stack pointer value. The fix is to save this
value instead inside of the original trap frame. At this point we do
not need the original trap frame so this is safe.
The second bug is that when the emulate code loads $esp from the stack, it
points part-way through the new trap frame instead of at its beginning.
The emulation code adjusts the stack pointer to the correct value
immediately afterwards, but this still leaves a one instruction window in
which an interrupt would corrupt this trap frame. Fix this by adjusting
the stack frame value before loading it into $esp.
This fixes panics in invop_leave on i386 when using fbt return probes.
Reviewed by: rpaulo, attilio
MFC after: 1 week
This implies that users who are building the driver do so with
KERNBUILDDIR set to the compile/CONFIG directory so the various
opt_* sources can be pulled in.
I need to investigate this a little closer, but it seems that in noisy
environments the NF load takes longer than 5 * DELAY(10) and this is
messing up future NF calibrations. (The background: NF calibrations
begin at the value programmed in after the load has completed, so
if this is never loaded in, the NF calibrations only ever start at
the currently calibrated NF value, rather than starting at something
high (say -50.)
More investigation about the effect on 11n RX and calibration results
are needed.
Sponsored by: Hobnob, Inc.
The AR5416 MAC (which shows up in the AR5008, AR9001, AR9002 devices) has
issues with PCI transactions on SMP machines. This work-around enforces
that register access is serialised through a (global for now) spinlock.
This should stop the hangs people have seen with the AR5416 PCI devices
on SMP hosts.
Obtained by: Linux, Atheros
ensuring that everything is really, truly consistent.
This fixes certain cases where one will see various:
mfi0: COMMAND 0xffffffXXXXXXXXXX TIMEOUT AFTER XX SECONDS
MFC after: 3 days
Submitted by: scottl
Ok'ed by: jhb
it's cloned and that clone is retransmitted. This means that the
ath_buf pointer squirreled away on the baw window array is suddenly
wrong and was causing all kinds of console output.
This updates the pointer in that particular BAW slot to the new
ath_buf after ensuring that:
* the new and old buffers have the same seqno;
* the current slot pointer matches the old buffer pointer.
This quietens the debugging output (again), restoring said debugging
to only signify when a broken condition has occured.
Sponsored by: Hobnob, Inc.
This is a bit hackish and should be made more generic (ie, support more than
two hard-coded performance counter+config register pairs) so it can be used
for mips74k and other chips.
All this does is process the initial interrupt event. It doesn't (yet) handle
callgraph events, so even if you route the exception/interrupt to this routine
and flip the bit on, it will hang and crash pmc unless you disable callgraph
support when you enable a sample based PMC.
Luckily, it mostly wasn't important, so this didn't cause major problems.
Also improve register reuse when setting up trap frames very slightly.
Submitted by: Justin Hibbits <chmeeedalf at gmail dot com>
MFC after: 5 days
Just place the default kobj_method inside the kobjop_desc structure.
There's no need to give these kobj_methods their own symbol. This shaves
off 10 KB of a GENERIC kernel binary.
to fetch the current channel busy statistics, rather than duplicating
it here.
This forms the (very crude) basis for doing basic channel surveying.
Sponsored by: Hobnob, Inc.
enabled if required by STA operation.
This quietens a lot of OFDM errors seen in hostap mode, where
there are no beacon RSSI levels to tune the dynamic range of the
baseband.
This may reduce reception range at the fringes, but does increase
stability.
Sponsored by: Hobnob, Inc.
The 5ghz hostap mode (where DFS is being done) requires ANI to be disabled
or the radar detection parameters don't work as advertised (as they're based
on signal strength level, and tweaking ANI affects the signal strangth,
dynamic range and power increase the baseband is looking for in order to
detect it as a "signal".)
Obtained from: Linux, Atheros
Sponsored by: Hobnob, Inc.
* If we fall through from an ANI command (eg because it's out of range,
or it's disabled) then fall through to the next ANI command rather then
being stuck there.
* Fix some off-by-one comparisons, meaning the final level in some parameters
were never tweaked.
Obtained from: Atheros
Sponsored by: Hobnob, Inc.
This forces a full reset of the baseband/radio and seems needed to clear
some issues (with Merlin at least) when the baseband gets confused in a
very noisy environment.
Sponsored by: Hobnob, Inc.
RX clear, RX extension clear.
This is useful for estimating channel business.
The same routines should be written for AR5210->AR5212 where appopriate.
Obtained from: Atheros
some unmerged interrupt status debugging code from my branch.
* Add ah_intrstate[8] which will have the record of the last
call to ath_hal_getintr().
* Wrap the KTR code behind ATH_KTR_INTR_DEBUG.
* Add the HAL interrupt debugging behind AH_INTERRUPT_DEBUGGING.
This is only done for the AR5416 and later NICs but it will be
trivial to add to the earlier NICs if required.
Neither are enabled by default, although to minimise HAL binary
API differences, the ah_intrstate[] array is always compiled into
the ath_hal struct.
for Atheros AR5416 and later wireless devices.
This is a very large commit - the complete history can be
found in the user/adrian/if_ath_tx branch.
Legacy (ie, pre-AR5416) devices also use the per-software
TXQ support and (in theory) can support non-aggregation
ADDBA sessions. However, the net80211 stack doesn't currently
support this.
In summary:
TX path:
* queued frames normally go onto a per-TID, per-node queue
* some special frames (eg ADDBA control frames) are thrown
directly onto the relevant hardware queue so they can
go out before any software queued frames are queued.
* Add methods to create, suspend, resume and tear down an
aggregation session.
* Add in software retransmission of both normal and aggregate
frames.
* Add in completion handling of aggregate frames, including
parsing the block ack bitmap provided by the hardware.
* Write an aggregation function which can assemble frames into
an aggregate based on the selected rate control and channel
configuration.
* The per-TID queues are locked based on their target hardware
TX queue. This matches what ath9k/atheros does, and thus
simplified porting over some of the aggregation logic.
* When doing TX aggregation, stick the sequence number allocation
in the TX path rather than net80211 TX path, and protect it
by the TXQ lock.
Rate control:
* Delay rate control selection until the frame is about to
be queued to the hardware, so retried frames can have their
rate control choices changed. Frames with a static rate
control selection have that applied before each TX, just
to simplify the TX path (ie, not have "static" and "dynamic"
rate control special cased.)
* Teach ath_rate_sample about aggregates - both completion and
errors.
* Add an EWMA for tracking what the current "good" MCS rate is
based on failure rates.
Misc:
* Introduce a bunch of dirty hacks and workarounds so TID mapping
and net80211 frame inspection can be kept out of the net80211
layer. Because of the way this code works (and it's from Atheros
and Linux ath9k), there is a consistent, 1:1 mapping between
TID and AC. So we need to ensure that frames going to a specific
TID will _always_ end up on the right AC, and vice versa, or the
completion/locking will simply get very confused. I plan on
addressing this mess in the future.
Known issues:
* There is no BAR frame transmission just yet. A whole lot of
tidying up needs to occur before BAR frame TX can occur in the
"correct" place - ie, once the TID TX queue has been drained.
* Interface reset/purge/etc results in frames in the TX and RX
queues being removed. This creates holes in the sequence numbers
being assigned and the TX/RX AMPDU code (on either side) just
hangs.
* There's no filtered frame support at the present moment, so
stations going into power saving mode will simply have a number
of frames dropped - likely resulting in a traffic "hang".
* Raw frame TX is going to just not function with 11n aggregation.
Likely this needs to be modified to always override the sequence
number if the frame is going into an aggregation session.
However, general raw frame injection currently doesn't work in
general in net80211, so let's just ignore this for now until
this is sorted out.
* HT protection is just not implemented and won't be until the above
is sorted out. In addition, the AR5416 has issues RTS protecting
large aggregates (anything >8k), so the work around needs to be
ported and tested. Thus, this will be put on hold until the above
work is complete.
* The rate control module 'sample' is the only currently supported
module; onoe/amrr haven't been tested and have likely bit rotted
a little. I'll follow up with some commits to make them work again
for non-11n rates, but they won't be updated to handle 11n and
aggregation. If someone wishes to do so then they're welcome to
send along patches.
* .. and "sample" doesn't really do a good job of 11n TX. Specifically,
the metrics used (packet TX time and failure/success rates) isn't as
useful for 11n. It's likely that it should be extended to take into
account the aggregate throughput possible and then choose a rate
which maximises that. Ie, it may be acceptable for a higher MCS rate
with a higher failure to be used if it gives a more acceptable
throughput/latency then a lower MCS rate @ a lower error rate.
Again, patches will be gratefully accepted.
Because of this, ATH_ENABLE_11N is still not enabled by default.
Sponsored by: Hobnob, Inc.
Obtained from: Linux, Atheros
preparation for TX aggregation.
* Add in logic which calls ath_buf bf->bf_comp if it's set.
This allows for AMPDU (and RIFS, and FF, if someone desires) code
to handle completion - which includes freeing subframes, retransmitting
subframes, etc.
* Break out the buffer free, buffer busy/unbusy default completion handler
code into separate functions. This allows bf_comp methods to free and
unbusy each subframe ath_buf as required.
* Break out the statistics update code into a separate function, just
to clean up the TX completion path a little.
Sponsored by: Hobnob, Inc.
descriptor, rather than using the maths involving bf_desc[bf_nseg - 1].
When doing TX aggregation, the status will be updated in the -final-
descriptor of the -final- subframe in an aggregate. Thus bf_lastds
may point to the last descriptor in a completely different ath_buf.
Sponsored by: Hobnob, Inc.
* Immediately return NULL if a buffer isn't available;
* Track the "buffers not available" count;
* Clear some fields used for tx aggregation;
* Add ath_buf_clone() which clones the majority of buffer state.
This is needed when retransmission of a "busy" buffer is required.
Sponsored by: Hobnob, Inc.