Mac with this chipset does not initialize AHCI mode unless it is started
from EFI loader. However, legacy ATA mode works.
Submitted by: jkim@ (original version)
Approved by: re (kib)
MFC after: 1 week
Slot field of the PxCMD register may point to an empty command slot.
That breaks command timeout detection logic, making impossible to find
what command actually caused timeout, and leading to infinite wait.
Workaround that by checking whether pointed command slot is really used
and can timeout in its time. And if not, fallback to the dumb algorithm
used with FBS -- let all commands to time out and then fail all of them.
Approved by: re (kib)
MFC after: 1 week
without waiting for device readiness (or at least not updating FIS receive
area in time). To workaround that, special quirk was added earlier to wait
for the FIS receive area update. But it was found that under same PCI ID
0x91231b4b and revision 0x11 there are two completely different chip
versions (firmware?): HBA and RAID. The problem is that RAID version in
some cases, such as hot-plug, does not update FIS receive area at all!
To workaround that, differentiate the chip versions by their capabilities,
and, if RAID version found, skip FIS receive area update waiting and read
device signature from the PxSIG register instead. This method doesn't work
for HBA version when PMP attached, so keep using previous workaround there.
(SEMB) is unable to communicate to Storage Enclosure Processor (SEP), in
response to hard and soft resets it should among other things return value
0x7F in Status register. The weird side is that it means DRQ bit set, which
tells that reset request is not completed. It would be fine if SEMB was the
only device on port. But if SEMB connected to PMP or built into it, it may
block access to other devices sharing same SATA port.
Make some tunings/fixes to soft-reset handling to workaround the issue:
- ahci(4): request CLO on the port after soft reset to ignore DRQ bit;
- siis(4): gracefully reinitialize port after soft reset timeout (hardware
doesn't detect reset request completion in this case);
- mvs(4): if PMP is used, send dummy soft-reset to the PMP port to make it
clear DRQ bit for us.
For now this makes quirks in ata_pmp.c, hiding SEMB ports of SiI3726/SiI4726
PMPs, less important. Further, if hardware permit, I hope to implement real
SEMB support.
When supported by hardware, this allows to control per-port activity, locate
and fault LEDs via the led(4) API for localization and status reporting
purposes. Supporting AHCI controllers may transmit that information to the
backplane controllers via SGPIO interface. Backplane controllers interpret
received statuses in some way (IBPI standard) to report them using present
indicators.
- use ATA_SE_EXCHANGED (SError.DIAG.X) bit to detect hot-plug events when
power-management enabled and ATA_SE_PHY_CHANGED (SError.DIAG.N) can't be
trusted;
- on controllers supporting staggered spin-up (SS) put unused channels
into Listen state instead of Off. It should still save some power, but
allow plug-in events to be detected;
- on controllers supporting cold presence detection (CPD), when power
management enabled, use CPD events to detect hot-plug in addition to PHY
events.
- make SATA SIMs announce capabilities to handle SDB with Notification bit;
- make PMP driver honor this SIMs capability;
- make SATA XPT to negotiate and enable this feature for ATAPI devices.
This feature allows supporting SATA ATAPI devices to inform system about
some events happened, that may require attention. In my case this allows
LG GH22LS50 SATA DVR-RW drive to report tray open/close events. Events
reported to CAM in form of AC_SCSI_AEN async. Further they could be used
as a hints for checking device status and reporting media change to upper
layers, for example, via spoiling mechanism of GEOM.
Instead of spinning in a tight loop for up to 15 seconds, polling for device
readiness while it spins up, return reset completion just after PHY reports
"connect well" or 100ms connection timeout. If device was found, use callout
for checking device readiness with 100ms period up to full 31 second timeout.
This fixes system freeze for 5-10 seconds on drives hot plug-in.
active I/O to several disks (copying large file on ZFS) causes timeout after
just a few seconds of run. Single port 88SX6111 seems like not affected.
Skip reading transferred bytes count for these controllers. It works for
88SX6111, but 88SX6145 always returns zero there. Haven't tested others,
but better to be safe.
- SMBus Controller
- SATA Controller
- HD Audio Controller
- Watchdog Controller
Thanks to Seth Heasley (seth.heasley@intel.com) for providing us code.
MFC after 3 days
These controllers consist of two Marvell 88SE9128 6Gbps SATA chips and
PLX PCIe bridge. As result, they seem to be agree to work with ahci(4)
as usual HBAs. The only noticed issue is that RAID BIOS disables all
drive caches during boot, though `camcontrol cmd ...` is able to fix that.
Those who wants RAID functionality can still use closed proprietary driver
from HighPoint site.
MFC after: 1 week
- device initiated power management (some devices support only this way);
- Automatic Partial to Slumber Transition (more power saving);
- DMA auto-activation (expected to slightly improve performance).
More features could be added later, when hardware supports.
With FBS enabled, we have no idea what command caused timeout.
Implement same logic as in siis(4) - wait for other commands
complete or timeout and then give some more time.
- Unify bus reset/probe sequence. Whenever bus attached at boot or later,
CAM will automatically reset and scan it. It allows to remove duplicate
code from many drivers.
- Any bus, attached before CAM completed it's boot-time initialization,
will equally join to the process, delaying boot if needed.
- New kern.cam.boot_delay loader tunable should help controllers that
are still unable to register their buses in time (such as slow USB/
PCCard/ CardBus devices), by adding one more event to wait on boot.
- To allow synchronization between different CAM levels, concept of
requests priorities was extended. Priorities now split between several
"run levels". Device can be freezed at specified level, allowing higher
priority requests to pass. For example, no payload requests allowed,
until PMP driver enable port. ATA XPT negotiate transfer parameters,
periph driver configure caching and so on.
- Frozen requests are no more counted by request allocation scheduler.
It fixes deadlocks, when frozen low priority payload requests occupying
slots, required by higher levels to manage theit execution.
- Two last changes were holding proper ATA reinitialization and error
recovery implementation. Now it is done: SATA controllers and Port
Multipliers now implement automatic hot-plug and should correctly
recover from timeouts and bus resets.
- Improve SCSI error recovery for devices on buses without automatic sense
reporting, such as ATAPI or USB. For example, it allows CAM to wait, while
CD drive loads disk, instead of immediately return error status.
- Decapitalize diagnostic messages and make them more readable and sensible.
- Teach PMP driver to limit maximum speed on fan-out ports.
- Make boot wait for PMP scan completes, and make rescan more reliable.
- Fix pass driver, to return CCB to user level in case of error.
- Increase number of retries in cd driver, as device may return several UAs.
Limit early revisions from 6Gb/s to 3Gb/s by default, or they negotiate
only 1.5Gbps, when 3Gb/s devices connected.
Add dummy driver for PATA part of these controllers, preventing generic
driver attach them. It causes system freeze when SATA controller used after
PATA was touched.
register, nVidia chipsets have different oppinion, requiring every interrupt
to be acknowledged there.
While there, add interrupt descriptions in multi-vector MSI mode.
causes additional MSIs messages sent if several ports asked for attention
same time. Time window before clearing is not important, as these interrupts
are level triggered by interrupt source.
- Extend XPT-SIM transfer settings control API. Now it allows to report to
SATA SIM number of tags supported by each device, implement ATA mode and
SATA revision negotiation for both SATA and PATA SIMs.
- Make ahci(4) and siis(4) to use submitted maximum tag number, when
scheduling requests. It allows to support NCQ on devices with lower tags
count then controller supports.
- Make PMP driver to report attached devices connection speeds.
- Implement ATA mode negotiation between user settings, device and
controller capabilities.
and Marvell handled. Instead of trying to attach two different drivers to
single device, wrapping each call, make one of them (atajmicron, atamarvell)
attach do device solely, but create child device for AHCI driver,
passing it all required resources. It is quite easy, as none of
resources are shared, except IRQ.
As result, it:
- makes drivers operation more independent and straitforward,
- allows to use new ahci(4) driver with such devices, adding support for
new features, such as PMP and NCQ, same time keeping legacy PATA support,
- will allow to just drop old ataahci driver, when it's time come.
- Move tagged queueing control from ADA to ATA XPT. It allows to control
device command queue length correctly. First step to support < 32 tags.
- Limit queue for non-tagged devices by 2 slots for ahci(4) and siis(4).
- Implement quirk matching for ATA devices.
- Move xpt_schedule_dev_sendq() from header to source file.
- Move delayed queue shrinking to the more expected place - element freeing.
- Remove some SCSIsms in ATA.
- Handle timeouts and fatal errors with port hard-reset. The rest of
recovery will be done by XPT on receiving async event. More gracefull
per-device soft-reset recovery can be implemented later.
- Add workaround for ATI SB600/SB700 PMP probe related bug, to speedup boot.
On error, freeze device queue, to allow periph driver to do proper recovery.
Freeze SIM queue only in some cases, when it is needed to protect SIM.
Implement better command timeout detection logic for non-queued commands.
This fixes false positives when command with short timeout waiting for the
long one. For example, when hald tastes CD during burning process.
Read and clear SERR register on interrupt.
modularize it so that new transports can be created.
Add a transport for SATA
Add a periph+protocol layer for ATA
Add a driver for AHCI-compliant hardware.
Add a maxio field to CAM so that drivers can advertise their max
I/O capability. Modify various drivers so that they are insulated
from the value of MAXPHYS.
The new ATA/SATA code supports AHCI-compliant hardware, and will override
the classic ATA driver if it is loaded as a module at boot time or compiled
into the kernel. The stack now support NCQ (tagged queueing) for increased
performance on modern SATA drives. It also supports port multipliers.
ATA drives are accessed via 'ada' device nodes. ATAPI drives are
accessed via 'cd' device nodes. They can all be enumerated and manipulated
via camcontrol, just like SCSI drives. SCSI commands are not translated to
their ATA equivalents; ATA native commands are used throughout the entire
stack, including camcontrol. See the camcontrol manpage for further
details. Testing this code may require that you update your fstab, and
possibly modify your BIOS to enable AHCI functionality, if available.
This code is very experimental at the moment. The userland ABI/API has
changed, so applications will need to be recompiled. It may change
further in the near future. The 'ada' device name may also change as
more infrastructure is completed in this project. The goal is to
eventually put all CAM busses and devices until newbus, allowing for
interesting topology and management options.
Few functional changes will be seen with existing SCSI/SAS/FC drivers,
though the userland ABI has still changed. In the future, transports
specific modules for SAS and FC may appear in order to better support
the topologies and capabilities of these technologies.
The modularization of CAM and the addition of the ATA/SATA modules is
meant to break CAM out of the mold of being specific to SCSI, letting it
grow to be a framework for arbitrary transports and protocols. It also
allows drivers to be written to support discrete hardware without
jeopardizing the stability of non-related hardware. While only an AHCI
driver is provided now, a Silicon Image driver is also in the works.
Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware
is possible and encouraged. Help with new transports is also encouraged.
Submitted by: scottl, mav
Approved by: re