- Add vendor/device ID for Corega USB-T ethernet adapter to necessary
places so that it will work with the kue driver.
- Add vendor/device ID for CATC Netmate devices for driver to be added
soon.
- Get really crazy about netisr stuff: avoid doing any mbuf allocations
or deallocations at splbio/splusb.
- Fix if_aue driver so that it works with LinkSys USB100TX: you need
to flip the GPIO bits just the right way to put the PHY in the right
mode.
layout. It seems that I cleaned it up a bit too much and confused a few
if () {
if () {
} else {
}
}
statements in the obvious manner.
This allows the driver to transmit packets again. *sigh*
packets into a single buffer, and set the DC_TX_COALESCE flag for the
Davicom DM9102 chip. I thought I had escaped this problem, but... This
chip appears to silently corrupt or discard transmitted frames when
using scatter/gather DMA (i.e. DMAing each packet fragment in place
with a separate descriptor). The only way to insure reliable transmission
is to coalesce transmitted packets into a single cluster buffer. (There
may also be an alignment constraint here, but mbuf cluster buffers are
naturally aligned on 2K boundaries, which seems to be good enough.)
The DM9102 driver for Linux written by Davicom also uses this workaround.
Unfortunately, the Davicom datasheet has no errata section describing
this or any other apparently known defect.
Problem noted by: allan_chou@davicom.com.tw
drive the transmitter, we have to check the interface's send queue in the
TX end of frame handler (i.e. the usb bulk out callback) and push out new
transmissions if the queue has packets in it and the transmitter is
ready. But the txeof handler is also called from a USB callback running
at splusb() too.
Grrr.
Use IFQ_MAXLEN instead. This seemed like a good idea at the time since
most 3c509s have all of 2k for their TX fifo. My intention was to revisit
ifq_maxlen and auto-scale it or something.
ttcp-t: 16777216 bytes in 21.53 real seconds = 761.07 KB/sec +++
ttcp-t: 2771 I/O calls, msec/call = 7.96, calls/sec = 128.72
ttcp-t: 0.0user 2.9sys 0:21real 13% 20i+280d 222maxrss 0+2pf 717+0csw
ttcp-r: 16777216 bytes in 14.11 real seconds = 1161.48 KB/sec +++
ttcp-r: 2050 I/O calls, msec/call = 7.05, calls/sec = 145.33
ttcp-r: 0.0user 1.4sys 0:14real 10% 87i+1198d 196maxrss 0+1pf 1949+186csw
I've got some tweaks that move the TX speed up to the RX speed but I've
got to groom them from the mess I've made of my source tree.
Yelled at by: wpaul
ddb is entered. Don't refer to `in_Debugger' to see if we
are in the debugger. (The variable used to be static in Debugger()
and wasn't updated if ddb is entered via traps and panic anyway.)
- Don't refer to `in_Debugger'.
- Add `db_active' to i386/i386/db_interface.d (as in
alpha/alpha/db_interface.c).
- Remove cnpollc() stub from ddb/db_input.c.
- Add the dbctl function to syscons, pcvt, and sio. (The function for
pcvt and sio is noop at the moment.)
Jointly developed by: bde and me
(The final version was tweaked by me and not reviewed by bde. Thus,
if there is any error in this commit, that is entirely of mine, not
his.)
Some changes were obtained from: NetBSD
Packets are received inside USB bulk transfer callbacks, which run at
splusb() (actually splbio()). The packet input queues are meant to be
manipulated at splimp(). However the locking apparently breaks down under
certain circumstances and the input queues can get trampled.
There's a similar problem with if_ppp, which is driven by hardware/tty
interrupts from the serial driver, but which must also manipulate the
packet input queues at splimp(). The fix there is to use a netisr, and
that's the fix I used here. (I can hear you groaning back there. Hush up.)
The usb_ethersubr module maintains a single queue of its own. When a
packet is received in the USB callback routine, it's placed on this
queue with usb_ether_input(). This routine also schedules a soft net
interrupt with schednetisr(). The ISR routine then runs later, at
splnet, outside of the USB callback/interrupt context, and passes the
packet to ether_input(), hopefully in a safe manner.
The reason this is implemented as a separate module is that there are
a limited number of NETISRs that we can use, and snarfing one up for
each driver that needs it is wasteful (there will be three once I get
the CATC driver done). It also reduces code duplication to a certain
small extent. Unfortunately, it also needs to be linked in with the
usb.ko module in order for the USB ethernet drivers to share it.
Also removed some uneeded includes from if_aue.c and if_kue.c
Fix suggested by: peter
Not rejected as a hairbrained idea by: n_hibma
Driver is not functional yet, but does compile. Tests with xe cards
indicates that it doesn't panic the machine when they are present, but
fail to probe. Interface help in the pcic/pccard layers are needed to
complete this driver.
o ifdef out pccardchip.h (almost all of it, there are dangling bits
o Add rid/res members to pccard_function
o remove pct/pch from pccard_softc
o map memory properly in scan_cis (almost, see XXX for more work)
o manage ccr.
o remove bogus comment I added about touching the ccr being a layering
violation for pccard. It is properly done at that level.
o More function prototyping
whilst we are playing or recording. since we should irq ~20 times/sec when
active, this should never trigger. in theory. if it never does trigger,
the check will be removed.
- Set MAX_OFFS driver compile option to 63 (was 64 which is wrong).
- Fix a typo in the SYMBIOS NVRAM layout structure and add field and
bit definition for the support of PIM_NOBUSRESET.
- Report to XPT PIM_NOBUSRESET and PIM_SCANHILO if set by user in NVRAM.
- Negotiate SYNC immediately after WIDE response from the target as
suggested by Justin Gibbs.
- Remove some misleading comment about CmdQue handling by CAM.
- Apply correctly the MAX_WIDE and MAX_OFFS driver options.
It seems that the IDE system uses 0x3f6 for itself, which conflicts with
fdc's default 0x3f0-3f7 allocation range. Sigh. Work around this.
Use bus_set_resource() rather than allocating specific areas, it makes
the code a little cleaner.
Based on work by: dfr
Note: the .INF file for LinkSys's driver says the vendor ID is 0x66b,
however this does not agree with the vendor ID listed for LinkSys in
the company list from www.usb.org. In fact, 0x66b doesn't seem to appear
in the company list at all. Furthermore, this same vendor ID crops
up in some of the D-Link .INF files. Frankly I don't know what the heck
is going on here, but I need to add 0x66b to usbdevs and call it
something, so here we are.