ki_childutime, and ki_emul. Also uses the timeradd() macro to correct
the calculation of ki_childtime. That will correct the value returned
when ki_childtime.tv_usec > 1,000,000.
This also implements a new KERN_PROC_GID option for kvm_getprocs().
It also implements the KERN_PROC_RGID and KERN_PROC_SESSION options
which were added to sys/kern/kern_proc.c revision 1.203.
PR: bin/65803 (a very tiny piece of the PR)
Submitted by: Cyrille Lefevre
The big lines are:
NODEV -> NULL
NOUDEV -> NODEV
udev_t -> dev_t
udev2dev() -> findcdev()
Various minor adjustments including handling of userland access to kernel
space struct cdev etc.
This enable us to use /dev/fwmem* as a core file.
e.g.
ps -M /dev/fwmem0.0 -N kernel.debug
dmesg -M /dev/fwmem0.0 -N kernel.debug
gdb -k -c /dev/fwmem0.0 kernel.debug
You need to set target EUI64 in hw.firewire.fwmem.eui64_hi/lo before
opening the device. On the target arch, (PCI) bus address must be
equivalent to physical address.
(We cannot use this for sparc64 because of IOMMU.)
No objection in: -audit
binaries in /bin and /sbin installed in /lib. Only the versioned files
reside in /lib, the .so symlink continues to live /usr/lib so the
toolchain doesn't need to be modified.
prime objectives are:
o Implement a syscall path based on the epc inststruction (see
sys/ia64/ia64/syscall.s).
o Revisit the places were we need to save and restore registers
and define those contexts in terms of the register sets (see
sys/ia64/include/_regset.h).
Secundairy objectives:
o Remove the requirement to use contigmalloc for kernel stacks.
o Better handling of the high FP registers for SMP systems.
o Switch to the new cpu_switch() and cpu_throw() semantics.
o Add a good unwinder to reconstruct contexts for the rare
cases we need to (see sys/contrib/ia64/libuwx)
Many files are affected by this change. Functionally it boils
down to:
o The EPC syscall doesn't preserve registers it does not need
to preserve and places the arguments differently on the stack.
This affects libc and truss.
o The address of the kernel page directory (kptdir) had to
be unstaticized for use by the nested TLB fault handler.
The name has been changed to ia64_kptdir to avoid conflicts.
The renaming affects libkvm.
o The trapframe only contains the special registers and the
scratch registers. For syscalls using the EPC syscall path
no scratch registers are saved. This affects all places where
the trapframe is accessed. Most notably the unaligned access
handler, the signal delivery code and the debugger.
o Context switching only partly saves the special registers
and the preserved registers. This affects cpu_switch() and
triggered the move to the new semantics, which additionally
affects cpu_throw().
o The high FP registers are either in the PCB or on some
CPU. context switching for them is done lazily. This affects
trap().
o The mcontext has room for all registers, but not all of them
have to be defined in all cases. This mostly affects signal
delivery code now. The *context syscalls are as of yet still
unimplemented.
Many details went into the removal of the requirement to use
contigmalloc for kernel stacks. The details are mostly CPU
specific and limited to exception_save() and exception_restore().
The few places where we create, destroy or switch stacks were
mostly simplified by not having to construct physical addresses
and additionally saving the virtual addresses for later use.
Besides more efficient context saving and restoring, which of
course yields a noticable speedup, this also fixes the dreaded
SMP bootup problem as a side-effect. The details of which are
still not fully understood.
This change includes all the necessary backward compatibility
code to have it handle older userland binaries that use the
break instruction for syscalls. Support for break-based syscalls
has been pessimized in favor of a clean implementation. Due to
the overall better performance of the kernel, this will still
be notived as an improvement if it's noticed at all.
Approved by: re@ (jhb)
that crept in recently. GCC will optimize the divides and multiplies for us.
Submitted by: David Schultz <dschultz@uclink.Berkeley.EDU>
MFC after: 1 day
memory while mapping a virtual address to a physical address.
This allows us to work with virtual addresses for page tables,
provided it doesn't cause infinite recursion. Currently all
page tables are direct mapped.