Commit Graph

297 Commits

Author SHA1 Message Date
phk
e622b9bcba Add new function fdunshare() which encapsulates the necessary light magic
for ensuring that a process' filedesc is not shared with anybody.

Use it in the two places which previously had private implmentations.

This collects all fd_refcnt handling in kern_descrip.c
2004-12-14 07:20:03 +00:00
das
130bed6547 Don't include sys/user.h merely for its side-effect of recursively
including other headers.
2004-11-27 06:51:39 +00:00
das
6175c08488 Remove local definitions of RANGEOF() and use __rangeof() instead.
Also remove a few bogus casts.
2004-11-20 23:00:59 +00:00
das
22907ad4ac Malloc p_stats instead of putting it in the U area. We should consider
simply embedding it in struct proc.

Reviewed by:	arch@
2004-11-20 02:28:48 +00:00
phk
216166ee0d Introduce an alias for FILEDESC_{UN}LOCK() with the suffix _FAST.
Use this in all the places where sleeping with the lock held is not
an issue.

The distinction will become significant once we finalize the exact
lock-type to use for this kind of case.
2004-11-13 11:53:02 +00:00
phk
d24107be6b Use more intuitive pointer for fdinit() and fdcopy().
Change fdcopy() to take unlocked filedesc.
2004-11-08 12:43:23 +00:00
phk
418eb9d34b Allow fdinit() to be called with a NULL fdp argument so we can use
it when setting up init.

Make fdinit() lock the fdp argument as needed.
2004-11-07 12:39:28 +00:00
das
35b6f981ab Back out rev 1.240; it is unnecessary. In particular,
p1 == curthread, so _PHOLD(p1) will not have to block
to swap in p1.

Noticed by:	jhb
2004-10-06 23:53:49 +00:00
das
e399d76f1b Avoid calling _PHOLD(p1) with p2's lock held, since _PHOLD()
may block to swap in p1.  Instead, call _PHOLD earlier, at a
point where the only lock held happens to be p1's.
2004-10-01 05:01:29 +00:00
julian
29732c6fb7 make some of these conditions apply equally to both threading systems. 2004-09-13 22:10:04 +00:00
julian
5813d27029 Refactor a bunch of scheduler code to give basically the same behaviour
but with slightly cleaned up interfaces.

The KSE structure has become the same as the "per thread scheduler
private data" structure. In order to not make the diffs too great
one is #defined as the other at this time.

The KSE (or td_sched) structure is  now allocated per thread and has no
allocation code of its own.

Concurrency for a KSEGRP is now kept track of via a simple pair of counters
rather than using KSE structures as tokens.

Since the KSE structure is different in each scheduler, kern_switch.c
is now included at the end of each scheduler. Nothing outside the
scheduler knows the contents of the KSE (aka td_sched) structure.

The fields in the ksegrp structure that are to do with the scheduler's
queueing mechanisms are now moved to the kg_sched structure.
(per ksegrp scheduler private data structure). In other words how the
scheduler queues and keeps track of threads is no-one's business except
the scheduler's. This should allow people to write experimental
schedulers with completely different internal structuring.

A scheduler call sched_set_concurrency(kg, N) has been added that
notifies teh scheduler that no more than N threads from that ksegrp
should be allowed to be on concurrently scheduled. This is also
used to enforce 'fainess' at this time so that a ksegrp with
10000 threads can not swamp a the run queue and force out a process
with 1 thread, since the current code will not set the concurrency above
NCPU, and both schedulers will not allow more than that many
onto the system run queue at a time. Each scheduler should eventualy develop
their own methods to do this now that they are effectively separated.

Rejig libthr's kernel interface to follow the same code paths as
linkse for scope system threads. This has slightly hurt libthr's performance
but I will work to recover as much of it as I can.

Thread exit code has been cleaned up greatly.
exit and exec code now transitions a process back to
'standard non-threaded mode' before taking the next step.
Reviewed by:	scottl, peter
MFC after:	1 week
2004-09-05 02:09:54 +00:00
alc
82e55fdf76 Push Giant deep into vm_forkproc(), acquiring it only if the process has
mapped System V shared memory segments (see shmfork_myhook()) or requires
the allocation of an ldt (see vm_fault_wire()).
2004-09-03 05:11:32 +00:00
julian
e9d9514975 Give setrunqueue() and sched_add() more of a clue as to
where they are coming from and what is expected from them.

MFC after:	2 days
2004-09-01 02:11:28 +00:00
julian
ee753ed190 Remove sched_free_thread() which was only used
in diagnostics. It has outlived its usefulness and has started
causing panics for people who turn on DIAGNOSTIC, in what is otherwise
good code.

MFC after:	2 days
2004-08-31 06:12:13 +00:00
jmg
bc1805c6e8 Add locking to the kqueue subsystem. This also makes the kqueue subsystem
a more complete subsystem, and removes the knowlege of how things are
implemented from the drivers.  Include locking around filter ops, so a
module like aio will know when not to be unloaded if there are outstanding
knotes using it's filter ops.

Currently, it uses the MTX_DUPOK even though it is not always safe to
aquire duplicate locks.  Witness currently doesn't support the ability
to discover if a dup lock is ok (in some cases).

Reviewed by:	green, rwatson (both earlier versions)
2004-08-15 06:24:42 +00:00
julian
61fada7840 Increase the amount of data exported by KTR in the KTR_RUNQ setting.
This extra data is needed to really follow what is going on in the
threaded case.
2004-08-09 18:21:12 +00:00
bmilekic
1c3958ce88 Move the schedlock owner state update following the context
switch in fork_exit() to before anything else is done (but keep
schedlock for the deadthread check).  This means one less
nasty bug if ever in the future whatever might have been called
before the update played with schedlock or critical sections.

Discussed with: tjr
2004-07-27 03:46:31 +00:00
cperciva
c009fddfd6 In revision 1.228, I accidentally broke the "total number of processes in
the system" resource limit code: When checking if the caller has superuser
privileges, we should be checking the *real* user, not the *effective*
user.  (In general, resource limiting is done based on the real user, in
order to avoid resource-exhaustion-by-setuid-program attacks.)

Now that a SUSER_RUID flag to suser_cred exists, use it here to return
this code to its correct behaviour.

Pointed out by:	rwatson
2004-07-26 07:54:39 +00:00
julian
a488bebcd2 When calling scheduler entrypoints for creating new threads and processes,
specify "us" as the thread not the process/ksegrp/kse.
You can always find the others from the thread but the converse is not true.
Theorotically this would lead to runtime being allocated to the wrong
entity in some cases though it is not clear how often this actually happenned.
(would only affect threaded processes and would probably be pretty benign,
but it WAS a bug..)

Reviewed by: peter
2004-07-18 23:36:13 +00:00
phk
e86017f8eb fix compilation. 2004-07-13 16:33:38 +00:00
cperciva
6bbfebb261 Replace "uid != 0" with "suser(td->td_ucred) != 0" when checking if we've
hit the maximum number of processes.  The last ten processes are reserved
for the *non-jailed* superuser.
2004-07-13 13:10:07 +00:00
marcel
49e32d12eb Allocate TIDs in thread_init() and deallocate them in thread_fini().
The overhead of unconditionally allocating TIDs (and likewise,
unconditionally deallocating them), is amortized across multiple
thread creations by the way UMA makes it possible to have type-stable
storage.
Previously the cost was kept down by having threads created as part
of a fork operation use the process' PID as the TID. While this had
some nice properties, it also introduced complexity in the way TIDs
were allocated. Most importantly, by using the type-stable storage
that UMA gives us this was also unnecessary.

This change affects how core dumps are created and in particular how
the PRSTATUS notes are dumped. Since we don't have a thread with a
TID equalling the PID, we now need a different way to preserve the
old and previous behavior. We do this by having the given thread (i.e.
the thread passed to the core dump code in td) dump it's state first
and fill in pr_pid with the actual PID. All other threads will have
pr_pid contain their TIDs. The upshot of all this is that the debugger
will now likely select the right LWP (=TID) as the initial thread.

Credits to: julian@ for spotting how we can utilize UMA.
Thanks to: all who provided julian@ with test results.
2004-06-26 18:58:22 +00:00
imp
74cf37bd00 Remove advertising clause from University of California Regent's license,
per letter dated July 22, 1999.

Approved by: core
2004-04-05 21:03:37 +00:00
marcel
1d37410c51 Assign thread IDs to kernel threads. The purpose of the thread ID (tid)
is twofold:
1. When a 1:1 or M:N threaded process dumps core, we need to put the
   register state of each of its kernel threads in the core file.
   This can only be done by differentiating the pid field in the
   respective note. For this we need the tid.
2. When thread support is present for remote debugging the kernel
   with gdb(1), threads need to be identified by an integer due to
   limitations in the remote protocol. This requires having a tid.

To minimize the impact of having thread IDs, threads that are created
as part of a fork (i.e. the initial thread in a process) will inherit
the process ID (i.e. tid=pid). Subsequent threads will have IDs larger
than PID_MAX to avoid interference with the pid allocation algorithm.
The assignment of tids is handled by thread_new_tid().

The thread ID allocation algorithm has been written with 3 assumptions
in mind:
1. IDs need to be created as fast a possible,
2. Reuse of IDs may happen instantaneously,
3. Someone else will write a better algorithm.
2004-04-03 15:59:13 +00:00
peter
bd5efd4600 Make the process_exit eventhandler run without Giant. Add Giant hooks
in the two consumers that need it.. processes using AIO and netncp.
Update docs.  Say that process_exec is called with Giant, but not to
depend on it.  All our consumers can handle it without Giant.
2004-03-14 02:06:28 +00:00
peter
963c36c195 Move the process_fork event out from under Giant. This one is easy,
since there are no consumers in the tree.  Document this.
2004-03-14 01:48:32 +00:00
peter
1cb95fd2b7 Push Giant down a little further:
- no longer serialize on Giant for thread_single*() and family in fork,
  exit and exec
- thread_wait() is mpsafe, assert no Giant
- reduce scope of Giant in exit to not cover thread_wait and just do
  vm_waitproc().
- assert that thread_single() family are not called with Giant
- remove the DROP/PICKUP_GIANT macros from thread_single() family
- assert that thread_suspend_check() s not called with Giant
- remove manual drop_giant hack in thread_suspend_check since we know it
  isn't held.
- remove the DROP/PICKUP_GIANT macros from thread_suspend_check() family
- mark kse_create() mpsafe
2004-03-13 22:31:39 +00:00
jmg
cf1b8bdb72 make sure we had the filedesc lock when calling fdinit when RFCFDG is set
on call to rfork.

Submitted by:	Brian Buchanan
Semi-Reviewed by: rwatson
2004-03-10 00:27:36 +00:00
peter
836666b0d7 Move a vref call outside of proc locks and Giant. By virtue of the fact
that we (p1) are currently running, we hold a reference on p_textvp which
means the vnode cannot go away.  p2 cannot run yet (and hence cannot exit)
so this should be safe to do at this point.  As a bonus, it removes a
block of under-Giant code that was there to support the vref.
2004-03-08 00:32:34 +00:00
alc
94f567f9bb Giant is not required for vm_thread_new_altkstack(). 2004-03-07 00:06:32 +00:00
peter
8ac8c686e1 Add a missing part of jhb's previous commit. It looks like he had a
patch chunk rejected that he missed.  This would manifest as a lock
assertion panic at boot (Giant not locked in kern_fork.c).

Obtained from:  jhb
2004-03-06 00:44:59 +00:00
jhb
af72c48e5f - Grab a share lock of the proctree lock while looking for a pid due to the
process group and session dereferences.  Also, check that p_pgrp and
  p_sesssion are NULL before dereferencing them.
- Push down Giant in fork1().

Requested by:	peter
2004-03-05 22:37:32 +00:00
bde
9c7937d9cf Fixed some style bugs (mainly English usage errors in comments). 2004-03-04 09:56:29 +00:00
truckman
1de257deb3 Split the mlock() kernel code into two parts, mlock(), which unpacks
the syscall arguments and does the suser() permission check, and
kern_mlock(), which does the resource limit checking and calls
vm_map_wire().  Split munlock() in a similar way.

Enable the RLIMIT_MEMLOCK checking code in kern_mlock().

Replace calls to vslock() and vsunlock() in the sysctl code with
calls to kern_mlock() and kern_munlock() so that the sysctl code
will obey the wired memory limits.

Nuke the vslock() and vsunlock() implementations, which are no
longer used.

Add a member to struct sysctl_req to track the amount of memory
that is wired to handle the request.

Modify sysctl_wire_old_buffer() to return an error if its call to
kern_mlock() fails.  Only wire the minimum of the length specified
in the sysctl request and the length specified in its argument list.
It is recommended that sysctl handlers that use sysctl_wire_old_buffer()
should specify reasonable estimates for the amount of data they
want to return so that only the minimum amount of memory is wired
no matter what length has been specified by the request.

Modify the callers of sysctl_wire_old_buffer() to look for the
error return.

Modify sysctl_old_user to obey the wired buffer length and clean up
its implementation.

Reviewed by:	bms
2004-02-26 00:27:04 +00:00
jhb
85386c7cf6 Always set a process' state to normal when it is fully constructed in
fork1() rather than only doing it for the RFSTOPPED case and then having
to fix it up in other places later on.
2004-02-05 21:01:37 +00:00
jhb
279b2b8278 Locking for the per-process resource limits structure.
- struct plimit includes a mutex to protect a reference count.  The plimit
  structure is treated similarly to struct ucred in that is is always copy
  on write, so having a reference to a structure is sufficient to read from
  it without needing a further lock.
- The proc lock protects the p_limit pointer and must be held while reading
  limits from a process to keep the limit structure from changing out from
  under you while reading from it.
- Various global limits that are ints are not protected by a lock since
  int writes are atomic on all the archs we support and thus a lock
  wouldn't buy us anything.
- All accesses to individual resource limits from a process are abstracted
  behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return
  either an rlimit, or the current or max individual limit of the specified
  resource from a process.
- dosetrlimit() was renamed to kern_setrlimit() to match existing style of
  other similar syscall helper functions.
- The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit()
  (it didn't used the stackgap when it should have) but uses lim_rlimit()
  and kern_setrlimit() instead.
- The svr4 compat no longer uses the stackgap for resource limits calls,
  but uses lim_rlimit() and kern_setrlimit() instead.
- The ibcs2 compat no longer uses the stackgap for resource limits.  It
  also no longer uses the stackgap for accessing sysctl's for the
  ibcs2_sysconf() syscall but uses kernel_sysctl() instead.  As a result,
  ibcs2_sysconf() no longer needs Giant.
- The p_rlimit macro no longer exists.

Submitted by:	mtm (mostly, I only did a few cleanups and catchups)
Tested on:	i386
Compiled on:	alpha, amd64
2004-02-04 21:52:57 +00:00
rwatson
cc302d7bf7 When aborting fork() due to a failure, if using MAC, make sure to clean
up the p_label field.

Obtained from:	TrustedBSD Project
Sponsored by:	DARPA, McAfee Research
2004-01-25 18:42:18 +00:00
rwatson
9929c2e385 Reduce gratuitous includes: don't include jail.h if it's not needed.
Presumably, at some point, you had to include jail.h if you included
proc.h, but that is no longer required.

Result of:	self injury involving adding something to struct prison
2004-01-21 17:10:47 +00:00
cognet
ced43cb5e7 Prevent a race condition between fork1() and whatever changes the pgrp by
setting the new process' p_pgrp again before inserting it in the p_pglist.
Without it we can get the new process to be inserted in a different p_pglist
than the one p2->p_pgrp points to, and this is not something we want to happen.
This is not a fix, merely a bandaid, but it will work until someone finds a
better way to do it.

Discussed with: 	jhb (a long time ago)
2004-01-09 23:42:36 +00:00
davidxu
f39653dda8 Make sigaltstack as per-threaded, because per-process sigaltstack state
is useless for threaded programs, multiple threads can not share same
stack.
The alternative signal stack is private for thread, no lock is needed,
the orignal P_ALTSTACK is now moved into td_pflags and renamed to
TDP_ALTSTACK.
For single thread or Linux clone() based threaded program, there is no
semantic changed, because those programs only have one kernel thread
in every process.

Reviewed by: deischen, dfr
2004-01-03 02:02:26 +00:00
bde
f03fdf4e6f Removed mostly-dead code for setting switchtime after the idle loop
clobbers this variable.  Long ago, when the idle loop wasn't in a
process, it set switchtime.tv_sec to zero to indicate that the time
needs to be read after the idle loop finishes.  The special case for
this isn't needed now that there is an idle process (for each CPU).
The time is read in the normal way when the idle process is switched
away from.  The seconds component of the time is only zero for the
first second after the uptime is set, and the mostly-dead code was only
executed during this time.  (This was slightly broken by using uptimes
instead of times relative to the Epoch -- in the original version the
seconds component of the time was only 0 for the first second after
the Epoch.)

In mi_switch(), moved the setting of switchticks to just after the
first (and now only) setting of switchtime.  This setting used to be
delayed since a late setting was needed for the idle case and an early
setting was not needed.  Now the early setting is needed so that
fork_exit() doesn't need to set either switchtime or switchticks.
Removed now-completely-rotted comment attached to this.  Most of the
code described by the comment had already moved to sched_switch().
2003-10-29 15:23:09 +00:00
bde
6bce6afbe7 Removed sched_nest variable in sched_switch(). Context switches always
begin with sched_lock held but not recursed, so this variable was
always 0.

Removed fixup of sched_lock.mtx_recurse after context switches in
sched_switch().  Context switches always end with this variable in the
same state that it began in, so there is no need to fix it up.  Only
sched_lock.mtx_lock really needs a fixup.

Replaced fixup of sched_lock.mtx_recurse in fork_exit() by an assertion
that sched_lock is owned and not recursed after it is fixed up.  This
assertion much match the one in mi_switch(), and if sched_lock were
recursed then a non-null fixup of sched_lock.mtx_recurse would probably
be needed again, unlike in sched_switch(), since fork_exit() doesn't
return to its caller in the normal way.
2003-10-29 14:40:41 +00:00
sam
59ff2ad5c7 Change instances of callout_init that specify MPSAFE behaviour to
use CALLOUT_MPSAFE instead of "1" for the second parameter.  This
does not change the behaviour; it just makes the intent more clear.
2003-08-19 17:51:11 +00:00
jhb
837193af8e - Various style fixes in both code and comments.
- Update some stale comments.
- Sort a couple of includes.
- Only set 'newcpu' in updatepri() if we use it.
- No functional changes.

Obtained from:	bde (via an old diff I got a long time ago)
2003-08-15 21:29:06 +00:00
jhb
e71dfc3b00 Adjust a comment to remove staleness and take slightly less implementation
specific perspective.
2003-08-04 20:35:13 +00:00
silby
79bbff7ee2 Add a ratelimited message of the form
"maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5)."

Which will be triggered whenever a user hits his/her maxproc limit or
the systemwide maxproc limit is reached.

MFC after:	1 week
2003-06-19 05:57:25 +00:00
davidxu
abb4420bbe Rename P_THREADED to P_SA. P_SA means a process is using scheduler
activations.
2003-06-15 00:31:24 +00:00
alc
d20c30720b Move the *_new_altkstack() and *_dispose_altkstack() functions out of the
various pmap implementations into the machine-independent vm.  They were
all identical.
2003-06-14 06:20:25 +00:00
obrien
3b8fff9e4c Use __FBSDID(). 2003-06-11 00:56:59 +00:00
tegge
e41badac0a Add tracking of process leaders sharing a file descriptor table and
allow a file descriptor table to be shared between multiple process
leaders.

PR:		50923
2003-06-02 16:05:32 +00:00
jhb
89a4eb17de - Merge struct procsig with struct sigacts.
- Move struct sigacts out of the u-area and malloc() it using the
  M_SUBPROC malloc bucket.
- Add a small sigacts_*() API for managing sigacts structures: sigacts_alloc(),
  sigacts_free(), sigacts_copy(), sigacts_share(), and sigacts_shared().
- Remove the p_sigignore, p_sigacts, and p_sigcatch macros.
- Add a mutex to struct sigacts that protects all the members of the struct.
- Add sigacts locking.
- Remove Giant from nosys(), kill(), killpg(), and kern_sigaction() now
  that sigacts is locked.
- Several in-kernel functions such as psignal(), tdsignal(), trapsignal(),
  and thread_stopped() are now MP safe.

Reviewed by:	arch@
Approved by:	re (rwatson)
2003-05-13 20:36:02 +00:00
jhb
9e17fca425 Initialize and destroy the struct proc mutex in the proc zone's init and
fini routines instead of in fork() and wait().  This has the nice side
benefit that the proc lock of any process on the allproc list is always
valid and sched_lock doesn't have to be used to test against PRS_NEW
anymore.
2003-05-01 21:16:38 +00:00
des
8ed712ead1 Instead of recording the Unix time in a process when it starts, record the
uptime.  Where necessary, convert it back to Unix time by adding boottime
to it.  This fixes a potential problem in the accounting code, which would
compute the elapsed time incorrectly if the Unix time was stepped during
the lifetime of the process.
2003-05-01 16:59:23 +00:00
jhb
0bca1844ff Axe a stale comment. 2003-04-30 19:41:04 +00:00
markm
6cc289554b Fix some easy, global, lint warnings. In most cases, this means
making some local variables static. In a couple of cases, this means
removing an unused variable.
2003-04-30 12:57:40 +00:00
jhb
128ae3c8d8 - Move PS_PROFIL and its new cousin PS_STOPPROF back over to p_flag and
rename them appropriately.  Protect both flags with both the proc lock
  and the sched_lock.
- Protect p_profthreads with the proc lock.
- Remove Giant from profil(2).
2003-04-22 20:54:04 +00:00
jhb
ab40c1468e - Push Giant down into the fork1() function a small bit.
- Set p_acflag earlier while already hold the proc lock in fork1().
- Mark the realitexpire() callout MPSAFE for new processes.  It was already
  marked safe for proc0 a long while ago.
2003-04-17 22:24:59 +00:00
jeff
a033a84006 - Adjust sched hooks for fork and exec to take processes as arguments instead
of ksegs since they primarily operation on processes.
 - KSEs take ticks so pass the kse through sched_clock().
 - Add a sched_class() routine that adjusts a ksegrp pri class.
 - Define a sched_fork_{kse,thread,ksegrp} and sched_exit_{kse,thread,ksegrp}
   that will be used to tell the scheduler about new instances of these
   structures within the same process.  These will be used by THR and KSE.
 - Change sched_4bsd to reflect this API update.
2003-04-11 03:39:07 +00:00
julian
6f175a0e20 Move the _oncpu entry from the KSE to the thread.
The entry in the KSE still exists but it's purpose will change a bit
when we add the ability to lock a KSE to a cpu.
2003-04-10 17:35:44 +00:00
jeff
1b4d7b91ce - Borrow the KSE single threading code for exec and exit. We use the check
if (p->p_numthreads > 1) and not a flag because action is only necessary
   if there are other threads.  The rest of the system has no need to
   identify thr threaded processes.
 - In kern_thread.c use thr_exit1() instead of thread_exit() if P_THREADED
   is not set.
2003-04-01 01:26:20 +00:00
jhb
98a481610a Replace the at_fork, at_exec, and at_exit functions with the slightly more
flexible process_fork, process_exec, and process_exit eventhandlers.  This
reduces code duplication and also means that I don't have to go duplicate
the eventhandler locking three more times for each of at_fork, at_exec, and
at_exit.

Reviewed by:	phk, jake, almost complete silence on arch@
2003-03-24 21:15:35 +00:00
jhb
f02ef38080 - Cache a reference to the credential of the thread that starts a ktrace in
struct proc as p_tracecred alongside the current cache of the vnode in
  p_tracep.  This credential is then used for all later ktrace operations on
  this file rather than using the credential of the current thread at the
  time of each ktrace event.
- Now that we have multiple ktrace-related items in struct proc that are
  pointers, rename p_tracep to p_tracevp to make it less ambiguous.

Requested by:	rwatson (1)
2003-03-13 18:24:22 +00:00
julian
3fc9836d46 Change the process flags P_KSES to be P_THREADED.
This is just a cosmetic change but I've been meaning to do it for about a year.
2003-02-27 02:05:19 +00:00
tjr
569e9d1a86 Remove the PL_SHAREMOD flag from struct plimit, which could have been
used to share resource limits between rfork threads, but never was.
Removing it makes resource limit locking much simpler -- only the current
process can change the contents of the structure that p_limit points to.
2003-02-20 04:18:42 +00:00
imp
cf874b345d Back out M_* changes, per decision of the TRB.
Approved by: trb
2003-02-19 05:47:46 +00:00
jeff
590a39e29b - Split the struct kse into struct upcall and struct kse. struct kse will
soon be visible only to schedulers.  This greatly simplifies much the
   KSE code.

Submitted by:	davidxu
2003-02-17 05:14:26 +00:00
tegge
f360480a68 Avoid file lock leakage when linuxthreads port or rfork is used:
- Mark the process leader as having an advisory lock
  - Check if process leader is marked as having advisory lock when
    closing file
  - Check that file is still open after lock has been obtained
  - Don't allow file descriptor table sharing between processes
    with different leaders

PR:		10265
Reviewed by:	alfred
2003-02-15 22:43:05 +00:00
julian
e8efa7328e Reversion of commit by Davidxu plus fixes since applied.
I'm not convinced there is anything major wrong with the patch but
them's the rules..

I am using my "David's mentor" hat to revert this as he's
offline for a while.
2003-02-01 12:17:09 +00:00
davidxu
4b9b549ca2 Move UPCALL related data structure out of kse, introduce a new
data structure called kse_upcall to manage UPCALL. All KSE binding
and loaning code are gone.

A thread owns an upcall can collect all completed syscall contexts in
its ksegrp, turn itself into UPCALL mode, and takes those contexts back
to userland. Any thread without upcall structure has to export their
contexts and exit at user boundary.

Any thread running in user mode owns an upcall structure, when it enters
kernel, if the kse mailbox's current thread pointer is not NULL, then
when the thread is blocked in kernel, a new UPCALL thread is created and
the upcall structure is transfered to the new UPCALL thread. if the kse
mailbox's current thread pointer is NULL, then when a thread is blocked
in kernel, no UPCALL thread will be created.

Each upcall always has an owner thread. Userland can remove an upcall by
calling kse_exit, when all upcalls in ksegrp are removed, the group is
atomatically shutdown. An upcall owner thread also exits when process is
in exiting state. when an owner thread exits, the upcall it owns is also
removed.

KSE is a pure scheduler entity. it represents a virtual cpu. when a thread
is running, it always has a KSE associated with it. scheduler is free to
assign a KSE to thread according thread priority, if thread priority is changed,
KSE can be moved from one thread to another.

When a ksegrp is created, there is always N KSEs created in the group. the
N is the number of physical cpu in the current system. This makes it is
possible that even an userland UTS is single CPU safe, threads in kernel still
can execute on different cpu in parallel. Userland calls kse_create to add more
upcall structures into ksegrp to increase concurrent in userland itself, kernel
is not restricted by number of upcalls userland provides.

The code hasn't been tested under SMP by author due to lack of hardware.

Reviewed by: julian
2003-01-26 11:41:35 +00:00
alfred
bf8e8a6e8f Remove M_TRYWAIT/M_WAITOK/M_WAIT. Callers should use 0.
Merge M_NOWAIT/M_DONTWAIT into a single flag M_NOWAIT.
2003-01-21 08:56:16 +00:00
alfred
dd68501eb2 fdcopy() only needs a filedesc pointer. 2003-01-01 01:19:31 +00:00
alfred
11118a8028 Since fdshare() and fdinit() only operate on filedescs, make them
take pointers to filedesc structures instead of threads.  This makes
it more clear that they do not do any voodoo with the thread/proc
or anything other than the filedesc passed in or returned.

Remove some XXX KSE's as this resolves the issue.
2003-01-01 01:01:14 +00:00
julian
dde96893c9 Add code to ddb to allow backtracing an arbitrary thread.
(show thread {address})

Remove the IDLE kse state and replace it with a change in
the way threads sahre KSEs. Every KSE now has a thread, which is
considered its "owner" however a KSE may also be lent to other
threads in the same group to allow completion of in-kernel work.
n this case the owner remains the same and the KSE will revert to the
owner when the other work has been completed.

All creations of upcalls etc. is now done from
kse_reassign() which in turn is called from mi_switch or
thread_exit(). This means that special code can be removed from
msleep() and cv_wait().

kse_release() does not leave a KSE with no thread any more but
converts the existing thread into teh KSE's owner, and sets it up
for doing an upcall. It is just inhibitted from being scheduled until
there is some reason to do an upcall.

Remove all trace of the kse_idle queue since it is no-longer needed.
"Idle" KSEs are now on the loanable queue.
2002-12-28 01:23:07 +00:00
julian
9868d96f1f Unbreak the KSE code. Keep track of zobie threads using the Per-CPU storage
during the context switch. Rearrange thread cleanups
to avoid problems with Giant. Clean threads when freed or
when recycled.

Approved by:	re (jhb)
2002-12-10 02:33:45 +00:00
rwatson
569048d3f9 Introduce p_label, extensible security label storage for the MAC framework
in struct proc.  While the process label is actually stored in the
struct ucred pointed to by p_ucred, there is a need for transient
storage that may be used when asynchronous (deferred) updates need to
be performed on the "real" label for locking reasons.  Unlike other
label storage, this label has no locking semantics, relying on policies
to provide their own protection for the label contents, meaning that
a policy leaf mutex may be used, avoiding lock order issues.  This
permits policies that act based on historical process behavior (such
as audit policies, the MAC Framework port of LOMAC, etc) can update
process properties even when many existing locks are held without
violating the lock order.  No currently committed policies implement use
of this label storage.

Approved by:	re
Obtained from:	TrustedBSD Project
Sponsored by:	DARPA, Network Associates Laboratories
2002-11-20 15:41:25 +00:00
rwatson
83684c4f6b We leaked a process lock reference in the event an RFTHREAD process
leader wasn't exiting during a fork; instead, do remember to release
the lock avoiding lock order reversals and recursion panic.

Reported by:	"Joel M. Baldwin" <qumqats@outel.org>
2002-11-18 14:23:21 +00:00
jhb
0ddab31832 Do not lock the process when calling fdfree() (this would have recursed on
a non-recursive lock, the proc lock, before) since we don't need it to
change p_fd.
2002-10-18 17:45:41 +00:00
jhb
e1100fc10b - Add a new global mutex 'ppeers_lock' to protect the p_peers list of
processes forked with RFTHREAD.
- Use a goto to a label for common code when exiting from fork1() in case
  of an error.
- Move the RFTHREAD linkage setup code later in fork since the ppeers_lock
  cannot be locked while holding a proc lock.  Handle the race of a task
  leader exiting and killing its peers while a peer is forking a new child.
  In that case, go ahead and let the peer process proceed normally as the
  parent is about to kill it.  However, the task leader may have already
  gone to sleep to wait for the peers to die, so the new child process may
  not receive a SIGKILL from the task leader.  Rather than try to destruct
  the new child process, just go ahead and send it a SIGKILL directly and
  add it to the p_peers list.  This ensures that the task leader will wait
  until both the peer process doing the fork() and the new child process
  have received their KILL signals and exited.

Discussed with:	truckman (earlier versions)
2002-10-15 00:14:32 +00:00
jeff
ef4d4e378e - Create a new scheduler api that is defined in sys/sched.h
- Begin moving scheduler specific functionality into sched_4bsd.c
 - Replace direct manipulation of scheduler data with hooks provided by the
   new api.
 - Remove KSE specific state modifications and single runq assumptions from
   kern_switch.c

Reviewed by:	-arch
2002-10-12 05:32:24 +00:00
julian
6b6ba96b60 Round out the facilty for a 'bound' thread to loan out its KSE
in specific situations. The owner thread must be blocked, and the
borrower can not proceed back to user space with the borrowed KSE.
The borrower will return the KSE on the next context switch where
teh owner wants it back. This removes a lot of possible
race conditions and deadlocks. It is consceivable that the
borrower should inherit the priority of the owner too.
that's another discussion and would be simple to do.

Also, as part of this, the "preallocatd spare thread" is attached to the
thread doing a syscall rather than the KSE. This removes the need to lock
the scheduler when we want to access it, as it's now "at hand".

DDB now shows a lot mor info for threaded proceses though it may need
some optimisation to squeeze it all back into 80 chars again.
(possible JKH project)

Upcalls are now "bound" threads, but "KSE Lending" now means that
other completing syscalls can be completed using that KSE before the upcall
finally makes it back to the UTS. (getting threads OUT OF THE KERNEL is
one of the highest priorities in the KSE system.) The upcall when it happens
will present all the completed syscalls to the KSE for selection.
2002-10-09 02:33:36 +00:00
scottl
3a150bca9c Some kernel threads try to do significant work, and the default KSTACK_PAGES
doesn't give them enough stack to do much before blowing away the pcb.
This adds MI and MD code to allow the allocation of an alternate kstack
who's size can be speficied when calling kthread_create.  Passing the
value 0 prevents the alternate kstack from being created.  Note that the
ia64 MD code is missing for now, and PowerPC was only partially written
due to the pmap.c being incomplete there.
Though this patch does not modify anything to make use of the alternate
kstack, acpi and usb are good candidates.

Reviewed by:	jake, peter, jhb
2002-10-02 07:44:29 +00:00
jmallett
7a693db242 Back our kernel support for reliable signal queues.
Requested by:	rwatson, phk, and many others
2002-10-01 17:15:53 +00:00
jmallett
0341f71df1 First half of implementation of ksiginfo, signal queues, and such. This
gets signals operating based on a TailQ, and is good enough to run X11,
GNOME, and do job control.  There are some intricate parts which could be
more refined to match the sigset_t versions, but those require further
evaluation of directions in which our signal system can expand and contract
to fit our needs.

After this has been in the tree for a while, I will make in kernel API
changes, most notably to trapsignal(9) and sendsig(9), to use ksiginfo
more robustly, such that we can actually pass information with our
(queued) signals to the userland.  That will also result in using a
struct ksiginfo pointer, rather than a signal number, in a lot of
kern_sig.c, to refer to an individual pending signal queue member, but
right now there is no defined behaviour for such.

CODAFS is unfinished in this regard because the logic is unclear in
some places.

Sponsored by:	New Gold Technology
Reviewed by:	bde, tjr, jake [an older version, logic similar]
2002-09-30 20:20:22 +00:00
mini
94ac5d965f Add kernel support needed for the KSE-aware libpthread:
- Use ucontext_t's to store KSE thread state.
	- Synthesize state for the UTS upon each upcall, rather than
	  saving and copying a trapframe.
	- Deliver signals to KSE-aware processes via upcall.
	- Rename kse mailbox structure fields to be more BSD-like.
	- Store the UTS's stack in struct proc in a stack_t.

Reviewed by:	bde, deischen, julian
Approved by:	-arch
2002-09-16 19:26:48 +00:00
julian
c7e9e7e892 Allocate KSEs and KSEGRPs separatly and remove them from the proc structure.
next step is to allow > 1 to be allocated per process. This would give
multi-processor threads. (when the rest of the infrastructure is
in place)

While doing this I noticed libkvm and sys/kern/kern_proc.c:fill_kinfo_proc
are diverging more than they should.. corrective action needed soon.
2002-09-15 23:52:25 +00:00
julian
5702a380a5 Completely redo thread states.
Reviewed by:	davidxu@freebsd.org
2002-09-11 08:13:56 +00:00
julian
4446570abf Use UMA as a complex object allocator.
The process allocator now caches and hands out complete process structures
*including substructures* .

i.e. it get's the process structure with the first thread (and soon KSE)
already allocated and attached, all in one hit.

For the average non threaded program (non KSE that is) the allocated thread and its stack remain attached to the process, even when the process is
unused and in the process cache. This saves having to allocate and attach it
later, effectively bringing us (hopefully) close to the efficiency
of pre-KSE systems where these were a single structure.

Reviewed by:	davidxu@freebsd.org, peter@freebsd.org
2002-09-06 07:00:37 +00:00
davidxu
b1d94c37f7 s/SGNL/SIG/
s/SNGL/SINGLE/
s/SNGLE/SINGLE/

Fix abbreviation for P_STOPPED_* etc flags, in original code they were
inconsistent and difficult to distinguish between them.

Approved by: julian (mentor)
2002-09-05 07:30:18 +00:00
julian
169932bd89 slight cleanup of single-threading code for KSE processes 2002-08-22 21:45:58 +00:00
mdodd
81d5cd61a7 Move code block added in 1.157 to a safer part of fork1().
Submitted by:	 jake
2002-08-07 11:31:45 +00:00
mdodd
e327abdb5f Kernel modifications necessary to allow to follow fork()ed children.
PR:		 bin/25587 (in part)
MFC after:	 3 weeks
2002-08-04 01:07:02 +00:00
silby
87912a806c Update docs to reflect change in count of procs reserved for root
from 1 to 10.

PR:             kern/40515
Submitted by:   David Schultz <dschultz@uclink.Berkeley.EDU>
MFC after:      1 day
2002-07-30 05:37:00 +00:00
truckman
b1555a2743 Wire the sysctl output buffer before grabbing any locks to prevent
SYSCTL_OUT() from blocking while locks are held.  This should
only be done when it would be inconvenient to make a temporary copy of
the data and defer calling SYSCTL_OUT() until after the locks are
released.
2002-07-28 19:59:31 +00:00
julian
b443e6894a part of a greater patch set..
1/ don't need to set td_state to TDS_RUNNING in fork_return.
it's already set in choosethread().
2/ Set a child process state to "normal" as opposed to "new"
when we allow it to be put on the run queue.
Allows child to receive signals from the parent if the parent
runs first and tries to immediatly signal he child.

Submitted by:  (part 2)	Thomas Moestl <tmoestl@gmx.net>
2002-07-14 08:29:15 +00:00
julian
d84464f213 Thinking about it I came to the conclusion that the KSE states were incorrectly
formulated.  The correct states should be:
IDLE:  On the idle KSE list for that KSEG
RUNQ:  Linked onto the system run queue.
THREAD: Attached to a thread and slaved to whatever state the thread is in.

This means that most places where we were adjusting kse state can go away
as it is just moving around because the thread is..
The only places we need to adjust the KSE state is in transition to and from
the idle and run queues.

Reviewed by:	jhb@freebsd.org
2002-07-14 03:43:33 +00:00
mini
b244d01c4d Revert removal of cred_free_thread(): It is used to ensure that a thread's
credentials are not improperly borrowed when the thread is not current in
the kernel.

Requested by:	jhb, alfred
2002-07-11 02:18:33 +00:00
julian
aa2dc0a5d9 Part 1 of KSE-III
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)

Reviewed by:	Almost everyone who counts
	(at various times, peter, jhb, matt, alfred, mini, bernd,
	and a cast of thousands)

	NOTE: this is still Beta code, and contains lots of debugging stuff.
	expect slight instability in signals..
2002-06-29 17:26:22 +00:00
mini
ef6f2f567d Remove unused diagnostic function cread_free_thread().
Approved by:	alfred
2002-06-24 06:22:00 +00:00
jhb
b83763b249 - Proper locking for p_tracep and p_traceflag.
- Catch up to new ktrace API.
2002-06-07 05:42:25 +00:00
jhb
80604a408d - Protect randompid and nprocs with the allproc_lock.
- Reorder fork1() to do malloc() and other blocking operations prior to
  acquiring the needed process locks.
- The new process inherit's the credentials of curthread, not the
  credentials of the old process.
- Document a really weird race that will come up with KSE allows multiple
  kernel threads per process.
2002-05-02 15:13:45 +00:00