Improvements:
* /etc/rc.suspend,rc.resume are always run, no matter the source of the
suspend request (user or kernel, apm or acpi)
* suspend now requires positive user acknowledgement. If a user program
wants to cancel the suspend, they can. If one of the user programs
hangs or doesn't respond within 10 seconds, the system suspends anyway.
* /dev/apm is clonable, allowing multiple listeners for suspend events.
In the future, xorg-server can use this to be informed about suspend
even if there are other listeners (i.e. apmd).
Changes:
* Two new ACPI ioctls: REQSLPSTATE and ACKSLPSTATE. Request begins the
process of suspending by notifying all listeners. acpi is monitored by
devd(8) and /dev/apm listener(s) are also counted. Users register their
approval or disapproval via Ack. If anyone disapproves, suspend is vetoed.
* Old user programs or kernel modules that used SETSLPSTATE continue to
work. A message is printed once that this interface is deprecated.
* acpiconf gains the -k flag to ack the suspend request. This flag is
undocumented on purpose since it's only used by /etc/rc.suspend. It is
not intended to be a permanent change and will be removed once a better
power API is implemented.
* S5 (power off) is no longer supported via acpiconf -s 5 or apm -z/-Z.
This restores previous behavior of halt/shutdown -p being the interface.
* Miscellaneous improvements to error reporting
Approved by: re
sysctl_handle_int is not sizeof the int type you want to export.
The type must always be an int or an unsigned int.
Remove the instances where a sizeof(variable) is passed to stop
people accidently cut and pasting these examples.
In a few places this was sysctl_handle_int was being used on 64 bit
types, which would truncate the value to be exported. In these
cases use sysctl_handle_quad to export them and change the format
to Q so that sysctl(1) can still print them.
While in the suspend path, this means the idle thread will just return
immediately rather than trying to enter C1-n. This helps in the case where
the chipset is powered down before the rest of the system and reads from
the cpu sleep registers begin returning immediately, causing the logic that
catches bad C2/C3 behavior to kick in. Observed on my Panasonic Y4.
MFC after: 3 days
(j/i) was being used and it was being incremented, not decremented as before.
Factor out this code into a common function and call it from both the common
and per-CPU case.
MFC after: 1 day
The global lock is a memory region shared with the BIOS and thus
has some strange behavior like the fact that the sleep is 1 ms max.
We use standard mutexes to synchronize with the SCI so acquiring
the global lock after locking the mutex resulted in a witness
warning.
To deal with this for now, acquire the global lock before all other
locks, similar to Giant. This should fix the witness "sleeping
with mutex held" issue on boot that occurred after the last ACPI-CA
import. In the future, we hope to move to the new mutex interface
in ACPI-CA instead of the pseudo-semaphore version we have now.
Reviewed by: jkim
back in a simulated resume instead of entering the requested suspend state.
This helps in testing drivers separately from the acpi suspend code. To
test your drivers, set debug.acpi.suspend_bounce=1 and then run
acpiconf -s3 (or 4).
MFC after: 1 day
- Simplify the amount of work that has be done for each architecture by
pushing more of the truly MI code down into the PCI bus driver.
- Don't bind MSI-X indicies to IRQs so that we can allow a driver to map
multiple MSI-X messages into a single IRQ when handling a message
shortage.
The changes include:
- Add a new pcib_if method: PCIB_MAP_MSI() which is called by the PCI bus
to calculate the address and data values for a given MSI/MSI-X IRQ.
The x86 nexus drivers map this into a call to a new 'msi_map()' function
in msi.c that does the mapping.
- Retire the pcib_if method PCIB_REMAP_MSIX() and remove the 'index'
parameter from PCIB_ALLOC_MSIX(). MD code no longer has any knowledge
of the MSI-X index for a given MSI-X IRQ.
- The PCI bus driver now stores more MSI-X state in a child's ivars.
Specifically, it now stores an array of IRQs (called "message vectors" in
the code) that have associated address and data values, and a small
virtual version of the MSI-X table that specifies the message vector
that a given MSI-X table entry uses. Sparse mappings are permitted in
the virtual table.
- The PCI bus driver now configures the MSI and MSI-X address/data
registers directly via custom bus_setup_intr() and bus_teardown_intr()
methods. pci_setup_intr() invokes PCIB_MAP_MSI() to determine the
address and data values for a given message as needed. The MD code
no longer has to call back down into the PCI bus code to set these
values from the nexus' bus_setup_intr() handler.
- The PCI bus code provides a callout (pci_remap_msi_irq()) that the MD
code can call to force the PCI bus to re-invoke PCIB_MAP_MSI() to get
new values of the address and data fields for a given IRQ. The x86
MSI code uses this when an MSI IRQ is moved to a different CPU, requiring
a new value of the 'address' field.
- The x86 MSI psuedo-driver loses a lot of code, and in fact the separate
MSI/MSI-X pseudo-PICs are collapsed down into a single MSI PIC driver
since the only remaining diff between the two is a substring in a
bootverbose printf.
- The PCI bus driver will now restore MSI-X state (including programming
entries in the MSI-X table) on device resume.
- The interface for pci_remap_msix() has changed. Instead of accepting
indices for the allocated vectors, it accepts a mini-virtual table
(with a new length parameter). This table is an array of u_ints, where
each value specifies which allocated message vector to use for the
corresponding MSI-X message. A vector of 0 forces a message to not
have an associated IRQ. The device may choose to only use some of the
IRQs assigned, in which case the unused IRQs must be at the "end" and
will be released back to the system. This allows a driver to use the
same remap table for different shortage values. For example, if a driver
wants 4 messages, it can use the same remap table (which only uses the
first two messages) for the cases when it only gets 2 or 3 messages and
in the latter case the PCI bus will release the 3rd IRQ back to the
system.
MFC after: 1 month
specific request and thus should first try to be allocated from the
sys_resource pool. This avoids using the sys_resource pool for wildcard
requests that have bounded ranges coming from cbb(4) and Host-PCI pcib(4)
drivers.
Tested by: Andrea Bittau <a.bittau of cs.ucl.ac.uk fame>
Sleuthing by: Andrea Bittau as well
obtaining and releasing shared and exclusive locks. The algorithms for
manipulating the lock cookie are very similar to that rwlocks. This patch
also adds support for exclusive locks using the same algorithm as mutexes.
A new sx_init_flags() function has been added so that optional flags can be
specified to alter a given locks behavior. The flags include SX_DUPOK,
SX_NOWITNESS, SX_NOPROFILE, and SX_QUITE which are all identical in nature
to the similar flags for mutexes.
Adaptive spinning on select locks may be enabled by enabling the
ADAPTIVE_SX kernel option. Only locks initialized with the SX_ADAPTIVESPIN
flag via sx_init_flags() will adaptively spin.
The common cases for sx_slock(), sx_sunlock(), sx_xlock(), and sx_xunlock()
are now performed inline in non-debug kernels. As a result, <sys/sx.h> now
requires <sys/lock.h> to be included prior to <sys/sx.h>.
The new kernel option SX_NOINLINE can be used to disable the aforementioned
inlining in non-debug kernels.
The size of struct sx has changed, so the kernel ABI is probably greatly
disturbed.
MFC after: 1 month
Submitted by: attilio
Tested by: kris, pjd
one (hardware & global lock). This should address witness complaints that
a duplicate mutex is being acquired. Be sure to free the mutex to fix a
potential memory leak.
MFC after: 3 days
simpler. It now can just use rman_is_region_manager() during
acpi_release_resource() to see if the the resource is suballocated from
a system resource. Also, the driver no longer needs MD knowledge about
how to setup bus space tags and handles when doing a suballocation, but
can simply rely on bus_activate_resource() in the parent setting all that
up.
cause the EC to stop handling future events because the GPE stayed masked.
Set a flag when queueing a GPE handler since it will ultimately re-enable
the GPE. In all other cases, re-enable it ourselves. I reworked the
patch from the submitter.
Submitted by: Rong-en Fan <grafan@gmail.com>
most systems, it causes the EC not to respond for some Acer and Compaq/HP
laptops. This is the default value for Linux also. For systems that need
it, burst mode can be enabled via the tunable/sysctl:
debug.acpi.ec.burst="1"
acpi module. Also clean up print of args a little.
This was accidentally committed as 1.9.2.3 in the stable branch. Since it
is harmless, I will let the "insta-MFC" stand unless there is a problem.
EC occasionally times out and provides bogus values (3000C). This change
prevents those systems from prematurely shutting down while we work on the
underlying problem. Also, bump the sanity value to 0...200C from 0...150C.
case where it asynchronously exits burst mode on its own. Handle different
values of hz in sleep loop. Provide more debugging options to tune EC
behavior. These tunables/sysctls may be temporary and are not for user
access if the EC is working properly. Burst mode is now on by default for
testing and the poll interval has been increased from 100 to 500 us and
total timeout from 100 to 500 ms.
Hopefully this should be the first step of addressing reports of timeout
errors during battery or thermal access, especially on HP/Compaq laptops.
It is reasonably stable and should not cause a loss of functionality or
performance on systems that were previously working. Testing shows an
increase of responsiveness by ~75% on one system.
PR: kern/98171
triggers a KASSERT) or local variables. In the case of kern_ndis, the
tsleep() actually used a common sleep address (curproc) making it
susceptible to a premature wakeup.
- First off, device drivers really do need to know if they are allocating
MSI or MSI-X messages. MSI requires allocating powerof2() messages for
example where MSI-X does not. To address this, split out the MSI-X
support from pci_msi_count() and pci_alloc_msi() into new driver-visible
functions pci_msix_count() and pci_alloc_msix(). As a result,
pci_msi_count() now just returns a count of the max supported MSI
messages for the device, and pci_alloc_msi() only tries to allocate MSI
messages. To get a count of the max supported MSI-X messages, use
pci_msix_count(). To allocate MSI-X messages, use pci_alloc_msix().
pci_release_msi() still handles both MSI and MSI-X messages, however.
As a result of this change, drivers using the existing API will only
use MSI messages and will no longer try to use MSI-X messages.
- Because MSI-X allows for each message to have its own data and address
values (and thus does not require all of the messages to have their
MD vectors allocated as a group), some devices allow for "sparse" use
of MSI-X message slots. For example, if a device supports 8 messages
but the OS is only able to allocate 2 messages, the device may make the
best use of 2 IRQs if it enables the messages at slots 1 and 4 rather
than default of using the first N slots (or indicies) at 1 and 2. To
support this, add a new pci_remap_msix() function that a driver may call
after a successful pci_alloc_msix() (but before allocating any of the
SYS_RES_IRQ resources) to allow the allocated IRQ resources to be
assigned to different message indices. For example, from the earlier
example, after pci_alloc_msix() returned a value of 2, the driver would
call pci_remap_msix() passing in array of integers { 1, 4 } as the
new message indices to use. The rid's for the SYS_RES_IRQ resources
will always match the message indices. Thus, after the call to
pci_remap_msix() the driver would be able to access the first message
in slot 1 at SYS_RES_IRQ rid 1, and the second message at slot 4 at
SYS_RES_IRQ rid 4. Note that the message slots/indices are 1-based
rather than 0-based so that they will always correspond to the rid
values (SYS_RES_IRQ rid 0 is reserved for the legacy INTx interrupt).
To support this API, a new PCIB_REMAP_MSIX() method was added to the
pcib interface to change the message index for a single IRQ.
Tested by: scottl
modern dual-core systems as well.
- Parse the _CST packages for each cpu and track all the states individually,
on a per-cpu basis.
- Revert to generic FADT/P_BLK based Cx control if the _CST package
is not present on all cpus. In that case, the new driver will
still support per-cpu Cx state handling. The driver will determine the
highest Cx level that can be supported by all the cpus and configure the
available Cx state based on that.
- Fixed the case where multiple cpus in the system share the same
registers for Cx state handling. To do that, added a new flag
parameter to the acpi_PkgGas and acpi_bus_alloc_gas functions that
enable the caller to add the RF_SHAREABLE flag. This flag could also be
useful to other callers (acpi_throttle?) in the tree but this change is
not yet made.
- For Core Duo cpus, both cores seems to be taken out of C3 state when
any one of the cores need to transition out. This broke the short sleep
detection logic. It is disabled now if there is more than one cpu in
the system for now as it fixed it in my case. This quirk may need to
be re-enabled later differently.
- Added support to control cx_lowest on a per-cpu basis. There is still
a generic cx_lowest to enable changing cx_lowest for all cpus with a single
sysctl and for ease of use. Sample output for the new sysctl:
dev.cpu.0.cx_supported: C1/1 C2/1 C3/57
dev.cpu.0.cx_lowest: C3
dev.cpu.0.cx_usage: 0.00% 43.16% 56.83%
dev.cpu.1.cx_supported: C1/1 C2/1 C3/57
dev.cpu.1.cx_lowest: C3
dev.cpu.1.cx_usage: 0.00% 45.65% 54.34%
hw.acpi.cpu.cx_lowest: C3
This work was done by Stephane E. Potvin with some simple reworking by
myself. Thank you.
Submitted by: Stephane E. Potvin <sepotvin / videotron.ca>
MFC after: 2 weeks
return an error since it returns a count of battery devices in the system.
Set it to 0 explicitly, since it is the only switch branch that doesn't set
it.
# I guess no one uses it.
pcib_alloc_msix() methods instead of using the method from the generic
PCI-PCI bridge driver as the PCI-PCI methods will be gaining some PCI-PCI
specific logic soon.
- Add 3 new functions to the pci_if interface along with suitable wrappers
to provide the device driver visible API:
- pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count'
here is an in and out parameter. The driver stores the desired number
of messages in '*count' before calling the function. On success,
'*count' holds the number of messages allocated to the device. Also on
success, the driver can access the messages as SYS_RES_IRQ resources
starting at rid 1. Note that the legacy INTx interrupt resource will
not be available when using MSI. Note that this function will allocate
either MSI or MSI-X messages depending on the devices capabilities and
the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note
that the driver should activate the memory resource that holds the
MSI-X table and pending bit array (PBA) before calling this function
if the device supports MSI-X.
- pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function
releases the messages allocated for this device. All of the
SYS_RES_IRQ resources need to be released for this function to succeed.
- pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns
the maximum number of MSI or MSI-X messages supported by this device.
MSI-X is preferred if present, but this function will honor the
'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function
should return the largest value that pci_alloc_msi() can return
(assuming the MD code is able to allocate sufficient backing resources
for all of the messages).
- Add default implementations for these 3 methods to the pci_driver generic
PCI bus driver. (The various other PCI bus drivers such as for ACPI and
OFW will inherit these default implementations.) This default
implementation depends on 4 new pcib_if methods that bubble up through
the PCI bridges to the MD code to allocate IRQ values and perform any
needed MD setup code needed:
- PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages.
- PCIB_RELEASE_MSI() releases a group of MSI messages.
- PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message.
- PCIB_RELEASE_MSIX() releases a single MSI-X message.
- Add default implementations for these 4 methods that just pass the
request up to the parent bus's parent bridge driver and use the
default implementation in the various MI PCI bridge drivers.
- Add MI functions for use by MD code when managing MSI and MSI-X
interrupts:
- pci_enable_msi(dev, address, data) programs the MSI capability address
and data registers for a group of MSI messages
- pci_enable_msix(dev, index, address, data) initializes a single MSI-X
message in the MSI-X table
- pci_mask_msix(dev, index) masks a single MSI-X message
- pci_unmask_msix(dev, index) unmasks a single MSI-X message
- pci_pending_msix(dev, index) returns true if the specified MSI-X
message is currently pending
- Save the MSI capability address and data registers in the pci_cfgreg
block in a PCI devices ivars and restore the values when a device is
resumed. Note that the MSI-X table is not currently restored during
resume.
- Add constants for MSI-X register offsets and fields.
- Record interesting data about any MSI-X capability blocks we come
across in the pci_cfgreg block in the ivars for PCI devices.
Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X)
Reviewed by: scottl, grehan, jfv
MFC after: 2 months
WB (write-back) on x86 via control bits in PTEs and PDEs (including making
use of the PAT MSR). Changes include:
- A new pmap_mapdev_attr() function for amd64 and i386 which takes an
additional parameter (relative to pmap_mapdev()) specifying the cache
mode for this mapping. Note that on amd64 only WB mappings are done with
the direct map, all other modes result in a private mapping.
- pmap_mapdev() on i386 and amd64 now defaults to using UC (uncached)
mappings rather than WB. Previously we relied on the BIOS setting up
MTRR's to enforce memio regions being treated as UC. This might make
hw.cbb_start_memory unnecessary in some cases now for example.
- A new pmap_mapbios()/pmap_unmapbios() API has been added to allow places
that used pmap_mapdev() to map non-device memory (such as ACPI tables)
to do so using WB as before.
- A new pmap_change_attr() function for amd64 and i386 that changes the
caching mode for a range of KVA.
Reviewed by: alc
function independently. This change is not only load-tested since I don't
have hardware that supports acpi_dock. Clean up comments and a name a
few constants.
that aren't listed as valid in the link device's set of possible IRQs.
This allows the hints to be used to work around broken BIOSes that don't
specify the correct ste of possible IRQs. A warning is issued in the
dmesg in this case to be consistent with the $PIR handling code.
MFC after: 1 week