the context of the process that reduced the effective count. Previously
all truncation as a result of unlink happened in the softdep flush
thread. This had the effect of being impossible to rate limit properly
with the journal code. Now the process issuing unlinks is suspended
when the journal files. This has a side-effect of improving rm
performance by allowing more concurrent work.
- Handle two cases in inactive, one for effnlink == 0 and another when
nlink finally reaches 0.
- Eliminate the SPACECOUNTED related code since the truncation is no
longer delayed.
Discussed with: mckusick
on the last iteration. This can lead to a deadlock when we have
worklist items that cannot be immediately satisfied.
Reported by: uqs, Dimitry Andric <dimitry@andric.com>
- Remove some unnecessary debugging code and place some other under
SUJ_DEBUG.
- Examine the journal state in softdep_slowdown().
- Re-format some comments so I may more easily add flag descriptions.
brings in support for an optional intent log which eliminates the need
for background fsck on unclean shutdown.
Sponsored by: iXsystems, Yahoo!, and Juniper.
With help from: McKusick and Peter Holm
has many positive effects including improved smp locking, reducing
interdependencies between mounts that can lead to deadlocks, etc.
- Add the softdep worklist and various counters to the ufsmnt structure.
- Add a mount pointer to the workitem and remove mount pointers from the
various structures derived from the workitem as they are now redundant.
- Remove the poor-man's semaphore protecting softdep_process_worklist and
softdep_flushworklist. Several threads may now process the list
simultaneously.
- Add softdep_waitidle() to block the thread until all pending
dependencies being operated on by other threads have been flushed.
- Use softdep_waitidle() in unmount and snapshots to block either
operation until the fs is stable.
- Remove softdep worklist processing from the syncer and move it into the
softdep_flush() thread. This thread processes all softdep mounts
once each second and when it is called via the new softdep_speedup()
when there is a resource shortage. This removes the softdep hook
from the kernel and various hacks in header files to support it.
Reviewed by/Discussed with: tegge, truckman, mckusick
Tested by: kris
As this code is not actually used by any of the existing
interfaces, it seems unlikely to break anything (famous
last words).
The internal kernel interface to manipulate these attributes
is invoked using two new IO_ flags: IO_NORMAL and IO_EXT.
These flags may be specified in the ioflags word of VOP_READ,
VOP_WRITE, and VOP_TRUNCATE. Specifying IO_NORMAL means that
you want to do I/O to the normal data part of the file and
IO_EXT means that you want to do I/O to the extended attributes
part of the file. IO_NORMAL and IO_EXT are mutually exclusive
for VOP_READ and VOP_WRITE, but may be specified individually
or together in the case of VOP_TRUNCATE. For example, when
removing a file, VOP_TRUNCATE is called with both IO_NORMAL
and IO_EXT set. For backward compatibility, if neither IO_NORMAL
nor IO_EXT is set, then IO_NORMAL is assumed.
Note that the BA_ and IO_ flags have been `merged' so that they
may both be used in the same flags word. This merger is possible
by assigning the IO_ flags to the low sixteen bits and the BA_
flags the high sixteen bits. This works because the high sixteen
bits of the IO_ word is reserved for read-ahead and help with
write clustering so will never be used for flags. This merge
lets us get away from code of the form:
if (ioflags & IO_SYNC)
flags |= BA_SYNC;
For the future, I have considered adding a new field to the
vattr structure, va_extsize. This addition could then be
exported through the stat structure to allow applications to
find out the size of the extended attribute storage and also
would provide a more standard interface for truncating them
(via VOP_SETATTR rather than VOP_TRUNCATE).
I am also contemplating adding a pathconf parameter (for
concreteness, lets call it _PC_MAX_EXTSIZE) which would
let an application determine the maximum size of the extended
atribute storage.
Sponsored by: DARPA & NAI Labs.
filesystem expands the inode to 256 bytes to make space for 64-bit
block pointers. It also adds a file-creation time field, an ability
to use jumbo blocks per inode to allow extent like pointer density,
and space for extended attributes (up to twice the filesystem block
size worth of attributes, e.g., on a 16K filesystem, there is space
for 32K of attributes). UFS2 fully supports and runs existing UFS1
filesystems. New filesystems built using newfs can be built in either
UFS1 or UFS2 format using the -O option. In this commit UFS1 is
the default format, so if you want to build UFS2 format filesystems,
you must specify -O 2. This default will be changed to UFS2 when
UFS2 proves itself to be stable. In this commit the boot code for
reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c)
as there is insufficient space in the boot block. Once the size of the
boot block is increased, this code can be defined.
Things to note: the definition of SBSIZE has changed to SBLOCKSIZE.
The header file <ufs/ufs/dinode.h> must be included before
<ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and
ufs_lbn_t.
Still TODO:
Verify that the first level bootstraps work for all the architectures.
Convert the utility ffsinfo to understand UFS2 and test growfs.
Add support for the extended attribute storage. Update soft updates
to ensure integrity of extended attribute storage. Switch the
current extended attribute interfaces to use the extended attribute
storage. Add the extent like functionality (framework is there,
but is currently never used).
Sponsored by: DARPA & NAI Labs.
Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
locking flags when acquiring a vnode. The immediate purpose is
to allow polling lock requests (LK_NOWAIT) needed by soft updates
to avoid deadlock when enlisting other processes to help with
the background cleanup. For the future it will allow the use of
shared locks for read access to vnodes. This change touches a
lot of files as it affects most filesystems within the system.
It has been well tested on FFS, loopback, and CD-ROM filesystems.
only lightly on the others, so if you find a problem there, please
let me (mckusick@mckusick.com) know.
whose name is within that block must ensure not only that the block
containing the file name has been written, but also that the on-disk
directory inode references that block. When a new directory block
is created, we allocate a newdirblk structure which is linked to
the associated allocdirect (on its ad_newdirblk list). When the
allocdirect has been satisfied, the newdirblk structure is moved
to the inodedep id_bufwait list of its directory to await the inode
being written. When the inode is written, the directory entries
are fully committed and can be deleted from their pagedep->id_pendinghd
and inodedep->id_pendinghd lists.
that are committed to being freed and reflect these blocks in the
counts returned by statfs (and thus also by the `df' command). This
change allows programs such as those that do news expiration to
know when to stop if they are trying to create a certain percentage
of free space. Note that this change does not solve the much harder
problem of making this to-be-freed space available to applications
that want it (thus on a nearly full filesystem, you may still
encounter out-of-space conditions even though the free space will
show up eventually). Hopefully this harder problem will be the
subject of a future enhancement.
the gating of system calls that cause modifications to the underlying
filesystem. The gating can be enabled by any filesystem that needs
to consistently suspend operations by adding the vop_stdgetwritemount
to their set of vnops. Once gating is enabled, the function
vfs_write_suspend stops all new write operations to a filesystem,
allows any filesystem modifying system calls already in progress
to complete, then sync's the filesystem to disk and returns. The
function vfs_write_resume allows the suspended write operations to
begin again. Gating is not added by default for all filesystems as
for SMP systems it adds two extra locks to such critical kernel
paths as the write system call. Thus, gating should only be added
as needed.
Details on the use and current status of snapshots in FFS can be
found in /sys/ufs/ffs/README.snapshot so for brevity and timelyness
is not included here. Unless and until you create a snapshot file,
these changes should have no effect on your system (famous last words).