This supersedes the fix for the old algorithm in rev.1.8 of k_cosf.c.
I want this change mainly because it is an optimization. It helps
make software cos[f](x) and sin[f](x) faster than the i387 hardware
versions for small x. It is also a simplification, and reduces the
maximum relative error for cosf() and sinf() on machines like amd64
from about 0.87 ulps to about 0.80 ulps. It was validated for cosf()
and sinf() by exhaustive testing. Exhaustive testing is not possible
for cos() and sin(), but ucbtest reports a similar reduction for the
worst case found by non-exhaustive testing. ucbtest's non-exhaustive
testing seems to be good enough to find problems in algorithms but not
maximum relative errors when there are spikes. E.g., short runs of
it find only 3 ulp error where the i387 hardware cos() has an error
of about 2**40 ulps near pi/2.
to floats (mainly i386's). All errors of more than 1 ulp for float
precision trig functions were supposed to have been fixed; however,
compiling with gcc -O2 uncovered 18250 more such errors for cosf(),
with a maximum error of 1.409 ulps.
Use essentially the same fix as in rev.1.8 of k_rem_pio2f.c (access a
non-volatile variable as a volatile). Here the -O1 case apparently
worked because the variable is in a 2-element array and it takes -O2
to mess up such a variable by putting it in a register.
The maximum error for cosf() on i386 with gcc -O2 is now 0.5467 (it
is still 0.5650 with gcc -O1). This shows that -O2 still causes some
extra precision, but the extra precision is now good.
Extra precision is harmful mainly for implementing extra precision in
software. We want to represent x+y as w+r where both "+" operations
are in infinite precision and r is tiny compared with w. There is a
standard algorithm for this (Knuth (1981) 4.2.2 Theorem C), and fdlibm
uses this routinely, but the algorithm requires w and r to have the
same precision as x and y. w is just x+y (calculated in the same
finite precision as x and y), and r is a tiny correction term. The
i386 gcc bugs tend to give extra precision in w, and then using this
extra precision in the calculation of r results in the correction
mostly staying in w and being missing from r. There still tends to
be no problem if the result is a simple expression involving w and r
-- modulo spills, w keeps its extra precision and r remains the right
correction for this wrong w. However, here we want to pass w and r
to extern functions. Extra precision is not retained in function args,
so w gets fixed up, but the change to the tiny r is tinier, so r almost
remains as a wrong correction for the right w.
{cos_sin}[f](x) so that x doesn't need to be reclassified in the
"kernel" functions to determine if it is tiny (it still needs to be
reclassified in the cosine case for other reasons that will go away).
This optimization is quite large for exponentially distributed x, since
x is tiny for almost half of the domain, but it is a pessimization for
uniformally distributed x since it takes a little time for all cases
but rarely applies. Arg reduction on exponentially distributed x
rarely gives a tiny x unless the reduction is null, so it is best to
only do the optimization if the initial x is tiny, which is what this
commit arranges. The imediate result is an average optimization of
1.4% relative to the previous version in a case that doesn't favour
the optimization (double cos(x) on all float x) and a large
pessimization for the relatively unimportant cases of lgamma[f][_r](x)
on tiny, negative, exponentially distributed x. The optimization should
be recovered for lgamma*() as part of fixing lgamma*()'s low-quality
arg reduction.
Fixed various wrong constants for the cutoff for "tiny". For cosine,
the cutoff is when x**2/2! == {FLT or DBL}_EPSILON/2. We round down
to an integral power of 2 (and for cos() reduce the power by another
1) because the exact cutoff doesn't matter and would take more work
to determine. For sine, the exact cutoff is larger due to the ration
of terms being x**2/3! instead of x**2/2!, but we use the same cutoff
as for cosine. We now use a cutoff of 2**-27 for double precision and
2**-12 for single precision. 2**-27 was used in all cases but was
misspelled 2**27 in comments. Wrong and sloppy cutoffs just cause
missed optimizations (provided the rounding mode is to nearest --
other modes just aren't supported).
readable on certain random memory configurations. If the libkvm consumer
tried to read something that was in the very last pdpe, pde or pte slot,
it would bogusly fail.
This is broken in RELENG_6 too.
expr and printf are not available during installworld, so
use /bin/sh arithmetic expansion instead of expr and simply
give up on vanity formatting. ;-)
systems (or on FreeBSD systems when using ports).
2) Overhaul the versioning logic. In particular,
SHLIB_MAJOR number is now computed as "major+minor",
which ensures library versions are the same for
the FreeBSD build system and the portable
libtool/autoconf/automake build system.
link names, usernames, or group names that contain
non-ASCII characters.
In particular, this corrects an inconsistency reported
by Ed Maste when archiving symlinks with odd characters:
long symlinks would get preserved, short ones would
be changed.
broken assignment to floats (e.g., i386 with gcc -O, but not amd64 or
ia64; i386 with gcc -O0 worked accidentally).
Use an unnamed volatile temporary variable to trick gcc -O into clipping
extra precision on assignment. It's surprising that only 1 place needed
to be changed.
For tanf() on i386 with gcc -O, the bug caused errors > 1 ulp with a
density of 2.3% for args larger in magnitude than 128*pi/2, with a
maximum error of 1.624 ulps.
After this fix, exhaustive testing shows that range reduction for
floats works as intended assuming that it is in within a factor of
about 2^16 of working as intended for doubles. It provides >= 8
extra bits of precision for all ranges. On i386:
range max error in double/single ulps extra precision
----- ------------------------------- ---------------
0 to 3*pi/4 0x000d3132 / 0.0016 9+ bits
3*pi/4 to 128*pi/2 0x00160445 / 0.0027 8+
128*pi/2 to +Inf 0x00000030 / 0.00000009 23+
128*pi/2 up, -O0 before fix 0x00000030 / 0.00000009 23+
128*pi/2 up, -O1 before fix 0x10000000 / 0.5 1
The 23+ bits of extra precision for large multiples corresponds to almost
perfect reduction to a pair of floats (24 extra would be perfect).
After this fix, the maximum relative error (relative to the corresponding
fdlibm double precision function) is < 1 ulp for all basic trig functions
on all 2^32 float args on all machines tested:
amd64 ia64 i386-O0 i386-O1
------ ------ ------ ------
cosf: 0.8681 0.8681 0.7927 0.5650
sinf: 0.8733 0.8610 0.7849 0.5651
tanf: 0.9708 0.9329 0.9329 0.7035
of pi/2 (1 line) and expand a comment about related magic (many lines).
The bug was essentially the same as for the +-pi/2 case (a mistranslated
mask), but was smaller so it only significantly affected multiples
starting near +-13*pi/2. At least on amd64, for cosf() on all 2^32
float args, the bug caused 128 errors of >= 1 ulp, with a maximum error
of 1.2393 ulps.
and add a comment about related magic (many lines)).
__kernel_cos[f]() needs a trick to reduce the error to below 1 ulp
when |x| >= 0.3 for the range-reduced x. Modulo other bugs, naive
code that doesn't use the trick would have an error of >= 1 ulp
in about 0.00006% of cases when |x| >= 0.3 for the unreduced x,
with a maximum relative error of about 1.03 ulps. Mistransation
of the trick from the double precision case resulted in errors in
about 0.2% of cases, with a maximum relative error of about 1.3 ulps.
The mistranslation involved not doing implicit masking of the 32-bit
float word corresponding to to implicit masking of the lower 32-bit
double word by clearing it.
sinf() uses __kernel_cosf() for half of all cases so its errors from
this bug are similar. tanf() is not affected.
The error bounds in the above and in my other recent commit messages
are for amd64. Extra precision for floats on i386's accidentally masks
this bug, but only if k_cosf.c is compiled with -O. Although the extra
precision helps here, this is accidental and depends on longstanding
gcc precision bugs (not clipping extra precision on assignment...),
and the gcc bugs are mostly avoided by compiling without -O. I now
develop libm mainly on amd64 systems to simplify error detection and
debugging.
17+17+24 bit pi/2 must only be used when subtraction of the first 2
terms in it from the arg is exact. This happens iff the the arg in
bits is one of the 2**17[-1] values on each side of (float)(pi/2).
Revert to the algorithm in rev.1.7 and only fix its threshold for using
the 3-term pi/2. Use the threshold that maximizes the number of values
for which the 3-term pi/2 is used, subject to not changing the algorithm
for comparing with the threshold. The 3-term pi/2 ends up being used
for about half of its usable range (about 64K values on each side).
a maximum error of 2.905 ulps for cosf(), but the algorithm for cosf()
is good for < 1 ulps and happens to give perfect rounding (< 0.5 ulps)
near +-pi/2 except for the bug. The extra relative errors for tanf()
were similar (slightly larger). The bug didn't affect sinf() since
sinf'(+-pi/2) is 0.
For range reduction in ~[-3pi/4, -pi/4] and ~[pi/4, 3pi/4] we must
subtract +-pi/2 and the only complication is that this must be done
in extra precision. We have handy 17+24-bit and 17+17+24-bit
approximations to pi/2. If we always used the former then we would
lose up to 24 bits of accuracy due to cancelation of leading bits, but
we need to keep at least 24 bits plus a guard digit or 2, and should
keep as many guard bits as efficiency permits. So we used the
less-precise pi/2 not very near +-pi/2 and switched to using the
more-precise pi/2 very near +-pi/2. However, we got the threshold for
the switch wrong by allowing 19 bits to cancel, so we ended up with
only 21 or 22 bits of accuracy in some cases, which is even worse than
naively subtracting pi/2 would have done.
Exhaustive checking shows that allowing only 17 bits to cancel (min.
accuracy ~24 bits) is sufficient to reduce the maximum error for cosf()
near +-pi/2 to 0.726 ulps, but allowing only 6 bits to cancel (min.
accuracy ~35-bits) happens to give perfect rounding for cosf() at
little extra cost so we prefer that.
We actually (in effect) allow 0 bits to cancel and always use the
17+17+24-bit pi/2 (min. accuracy ~41 bits). This is simpler and
probably always more efficient too. Classifying args to avoid using
this pi/2 when it is not needed takes several extra integer operations
and a branch, but just using it takes only 1 FP operation.
The patch also fixes misspelling of 17 as 24 in many comments.
For the double-precision version, the magic numbers include 33+53 bits
for the less-precise pi/2 and (53-32-1 = 20) bits being allowed to
cancel, so there are ~33-20 = 13 guard bits. This is sufficient except
probably for perfect rounding. The more-precise pi/2 has 33+33+53
bits and we still waste time classifying args to avoid using it.
The bug is apparently from mistranslation of the magic 32 in 53-32-1.
The number of bits allowed to cancel is not critical and we use 32 for
double precision because it allows efficient classification using a
32-bit comparison. For float precision, we must use an explicit mask,
and there are fewer bits so there is less margin for error in their
allocation. The 32 got reduced to 4 but should have been reduced
almost in proportion to the reduction of mantissa bits.
in 1993 in rev.1.5 of the i386 a.out version (csu/i386/crt0.c).
Profiling uses a magic label "eprol" to delimit the start of the part
of the text section covered by profiling. This label must be placed
before the call to main() to get main() properly profiled. It was
placed there in rev.1.1 of crt0.c. Rev.1.5 imported the initial
implementation of shared libraries in FreeBSD and misplaced the label.
Fortunately, the misplaced label was misspelled and the old label
wasn't removed, so the new label had no effect. Unfortunately, when
profiling was implemented for the ELF in 1998 in rev.1.2 of
csu/i386-elf/crt1.c, only the incorrectly placed label was copied
(after fixing its name). The bug was then copied to all other arches.
The label seems to be still misplaced in NetBSD for most arches. It
is in common.c for most arches so it is even further from being inside
the function that calls main().
I think "eprol" is short for "end of prologue", but it must be placed
before the end of the prologue so that it covers main(). crt0.c has
it before the calls atexit(_mcleanup) and monstartup(...), but it
cannot affect these calls so I moved it after the call to monstartup().
It now also covers the call to _init() but not the newer call to
_init_tls(). Profiling of _init() seems to be harmless, and the call
to _init_tls() seems to be misplaced.
Reviewed by: jdp (long ago, for a slightly different i386 version)
host name. This is matches the documented behaviro. The previous
behavior would remove the domain name even if the result retained a dot.
This fixes rsh connections from a.example.com to example.com.
Reviewed by: ceri (at least the concept)