reduces the size of the pv_entry structure a small but significant amount.
This is implemented a little differently because it isn't so cheap to get
the physical address of the page tabke page on amd64.. instead of it
being directly accessible from the top level page directory, it is now
two additional tree levels down. However.. In almost all cases, we
recently had the physical address if the page table page a short while
before we needed it, but it slipped through our fingers. This patch
saves it for when we do need it. Also, for the one case where we do not
have the ptp paddr, we are always running in curproc context and so we
can do a vtopte-like trick. I've implemented vtopde() for this purpose.
There is still a CYA entry in pmap_unuse_pt() that needs to be removed. I
think it can be removed now but I forgot to test with it gone.
- export the rest of the cpu features (and amd's features).
- turn on EFER_NXE, depending on the NX amd feature bit
- reorg the identcpu stuff a bit in order to stop treating the
amd features as second class features (since it is now a primary feature
bit set) and make it easier to export.
lives in the top 12 'available' bits. atop() in the PHYS_TO_VM_PAGE()
macro only masks off the lower bits (by accident) and the upper bits
in the 64 bit ptes turn into "interesting" index values.
move its declaration to the machine-dependent header file on those
machines that use it. In principle, only i386 should have it.
Alpha and AMD64 should use their direct virtual-to-physical mapping.
- Remove pmap_kenter_temporary() from ia64. It is unused. Approved
by: marcel@
- This is heavily derived from John Baldwin's apic/pci cleanup on i386.
- I have completely rewritten or drastically cleaned up some other parts.
(in particular, bootstrap)
- This is still a WIP. It seems that there are some highly bogus bioses
on nVidia nForce3-150 boards. I can't stress how broken these boards
are. I have a workaround in mind, but right now the Asus SK8N is broken.
The Gigabyte K8NPro (nVidia based) is also mind-numbingly hosed.
- Most of my testing has been with SCHED_ULE. SCHED_4BSD works.
- the apic and acpi components are 'standard'.
- If you have an nVidia nForce3-150 board, you are stuck with 'device
atpic' in addition, because they somehow managed to forget to connect the
8254 timer to the apic, even though its in the same silicon! ARGH!
This directly violates the ACPI spec.
on the implied sign extension. The single unified VADDR() macro was
not able to avoid sign extending the VM_MAXUSER_ADDRESS/USRSTACK values.
Be explicit about UVADDR() (positive address space) and KVADDR()
(kernel negative address space) to make mistakes show up more
spectacularly.
Increase user VM space from 1/2TB (512GB) to 128TB.
systems. Of note:
- Implement a direct mapped region using 2MB pages. This eliminates the
need for temporary mappings when getting ptes. This supports up to
512GB of physical memory for now. This should be enough for a while.
- Implement a 4-tier page table system. Most of the infrastructure is
there for 128TB of userland virtual address space, but only 512GB is
presently enabled due to a mystery bug somewhere. The design of this
was heavily inspired by the alpha pmap.c.
- The kernel is moved into the negative address space(!).
- The kernel has 2GB of KVM available.
- Provide a uma memory allocator to use the direct map region to take
advantage of the 2MB TLBs.
- Fixed some assumptions in the bus_space macros about the ability
to fit virtual addresses in an 'int'.
Notable missing things:
- pmap_growkernel() should be able to grow to 512GB of KVM by expanding
downwards below kernbase. The kernel must be at the top 2GB of the
negative address space because of gcc code generation strategies.
- need to fix the >512GB user vm code.
Approved by: re (blanket)
a heavily stripped down FreeBSD/i386 (brutally stripped down actually) to
attempt to get a stable base to start from. There is a lot missing still.
Worth noting:
- The kernel runs at 1GB in order to cheat with the pmap code. pmap uses
a variation of the PAE code in order to avoid having to worry about 4
levels of page tables yet.
- It boots in 64 bit "long mode" with a tiny trampoline embedded in the
i386 loader. This simplifies locore.s greatly.
- There are still quite a few fragments of i386-specific code that have
not been translated yet, and some that I cheated and wrote dumb C
versions of (bcopy etc).
- It has both int 0x80 for syscalls (but using registers for argument
passing, as is native on the amd64 ABI), and the 'syscall' instruction
for syscalls. int 0x80 preserves all registers, 'syscall' does not.
- I have tried to minimize looking at the NetBSD code, except in a couple
of places (eg: to find which register they use to replace the trashed
%rcx register in the syscall instruction). As a result, there is not a
lot of similarity. I did look at NetBSD a few times while debugging to
get some ideas about what I might have done wrong in my first attempt.
the top of the address space to be reclaimed. The problem is that with
the APTD gone the mapable kernel address space runs right to the end of
the 32 bit address space. As a max this is 0x100000000, which can't be
represented in 32 bits, so we have to use ptd entry n-1 and pte offset
n-1, instead of ptd entry n and pte offset 0. There's still 1 page we
can't use, but we gain just under 4 megs of kva (8 megs with PAE).
Sponsored by: DARPA, Network Associates Laboratories
as it could be and can do with some more cleanup. Currently its under
options LAZY_SWITCH. What this does is avoid %cr3 reloads for short
context switches that do not involve another user process. ie: we can
take an interrupt, switch to a kthread and return to the user without
explicitly flushing the tlb. However, this isn't as exciting as it could
be, the interrupt overhead is still high and too much blocks on Giant
still. There are some debug sysctls, for stats and for an on/off switch.
The main problem with doing this has been "what if the process that you're
running on exits while we're borrowing its address space?" - in this case
we use an IPI to give it a kick when we're about to reclaim the pmap.
Its not compiled in unless you add the LAZY_SWITCH option. I want to fix a
few more things and get some more feedback before turning it on by default.
This is NOT a replacement for Bosko's lazy interrupt stuff. This was more
meant for the kthread case, while his was for interrupts. Mine helps a
little for interrupts, but his helps a lot more.
The stats are enabled with options SWTCH_OPTIM_STATS - this has been a
pseudo-option for years, I just added a bunch of stuff to it.
One non-trivial change was to select a new thread before calling
cpu_switch() in the first place. This allows us to catch the silly
case of doing a cpu_switch() to the current process. This happens
uncomfortably often. This simplifies a bit of the asm code in cpu_switch
(no longer have to call choosethread() in the middle). This has been
implemented on i386 and (thanks to jake) sparc64. The others will come
soon. This is actually seperate to the lazy switch stuff.
Glanced at by: jake, jhb
kernel opition 'options PAE'. This will only work with device drivers which
either use busdma, or are able to handle 64 bit physical addresses.
Thanks to Lanny Baron from FreeBSD Systems for the loan of a test machine
with 6 gigs of ram.
Sponsored by: DARPA, Network Associates Laboratories, FreeBSD Systems
accessing an alternate address space this causes 1 page table page at
a time to be mapped in, rather than using the recursive mapping technique
to map in an entire alternate address space. The recursive mapping
technique changes large portions of the address space and requires global
tlb flushes, which seem to cause problems when PAE is enabled. This will
also allow IPIs to be avoided when mapping in new page table pages using
the same technique as is used for pmap_copy_page and pmap_zero_page.
Sponsored by: DARPA, Network Associates Laboratories
where physical addresses larger than virtual addresses, such as i386s
with PAE.
- Use this to represent physical addresses in the MI vm system and in the
i386 pmap code. This also changes the paddr parameter to d_mmap_t.
- Fix printf formats to handle physical addresses >4G in the i386 memory
detection code, and due to kvtop returning vm_paddr_t instead of u_long.
Note that this is a name change only; vm_paddr_t is still the same as
vm_offset_t on all currently supported platforms.
Sponsored by: DARPA, Network Associates Laboratories
Discussed with: re, phk (cdevsw change)
are machine dependent because they are not required to update the tlb when
mappings are added or removed, and doing so is machine dependent.
In addition, an implementation may require that pages mapped with pmap_kenter
have a backing vm_page_t, which is not necessarily true of all physical
pages, and so may choose to pass the vm_page_t to pmap_kenter instead of the
physical address in order to make this requirement clear.
for testing and setting the current and alternate address spaces.
- Changed PTDpde and APTDpde to arrays to support multiple page directory
pages.
ponsored by: DARPA, Network Associates Laboratories
- Changed VM_MAXUSER_ADDRESS to be defined in terms of PTDPTDI. In order for
assumptions about the recursive page table map to work it must be the base
of the recursive map. Any pte offset that's not NPTEPG will break these
assumptions.
Sponsored by: DARPA, Network Associates Laboratories
page directory.
- Use these instead of the magic constants 1 or PAGE_SIZE where appropriate.
There are still numerous assumptions that the page directory is exactly
1 page.
Sponsored by: DARPA, Network Associates Laboratories
- It actually works this time, honest!
- Fine grained TLB shootdowns for SMP on i386. IPI's are very expensive,
so try and optimize things where possible.
- Introduce ranged shootdowns that can be done as a single IPI.
- PG_G support for i386
- Specific-cpu targeted shootdowns. For example, there is no sense in
globally purging the TLB cache for where we are stealing a page from
the local unshared process on the local cpu. Use pm_active to track
this.
- Add some instrumentation for the tlb shootdown code.
- Rip out SMP code from <machine/cpufunc.h>
- Try and fix some very bogus PG_G and PG_PS interactions that were bad
enough to cause vm86 bios calls to break. vm86 depended on our existing
bugs and this was the cause of the VESA panics last time.
- Fix the silly one-line error that caused the 'panic: bad pte' last time.
- Fix a couple of other silly one-line errors that should have caused more
pain than they did.
Some more work is needed:
- pmap_{zero,copy}_page[_idle]. These can be done without IPI's if we
have a hook in cpu_switch.
- The IPI handlers need some cleanup. I have a bogus %ds load that can
be avoided.
- APTD handling is rather bogus and appears to be a large source of
global TLB IPI shootdowns for no really good reason.
I see speedups of between 1.5% and ~4% on buildworlds in a while 1 loop.
I expect to see a bigger difference when there is significant pageout
activity or the system otherwise has memory shortages.
I have backed out a few optimizations that I had been using over the last
few days in order to be a little more conservative. I'll revisit these
again over the next few days as the dust settles.
New option: DISABLE_PG_G - In case I missed something.
i386/ia64/alpha - catch up to sparc64/ppc:
- replace pmap_kernel() with refs to kernel_pmap
- change kernel_pmap pointer to (&kernel_pmap_store)
(this is a speedup since ld can set these at compile/link time)
all platforms (as suggested by jake):
- gc unused pmap_reference
- gc unused pmap_destroy
- gc unused struct pmap.pm_count
(we never used pm_count - we track address space sharing at the vmspace)
There is some unresolved badness that has been eluding me, particularly
affecting uniprocessor kernels. Turning off PG_G helped (which is a bad
sign) but didn't solve it entirely. Userland programs still crashed.
on for a while:
- fine grained TLB shootdown for SMP on i386
- ranged TLB shootdowns.. eg: specify a range of pages to shoot down with
a single IPI, since the IPI is very expensive. Adjust some callers
that used to trigger this inside tight loops to do a ranged shootdown
at the end instead.
- PG_G support for SMP on i386 (options ENABLE_PG_G)
- defer PG_G activation till after we decide what we are going to do with
PSE and the 4MB pages at the start of the kernel. This should solve
some rumored strangeness about stale PG_G entries getting stuck
underneath the 4MB pages.
- add some instrumentation for the fine TLB shootdown
- convert some asm instruction wrappers from functions to inlines. gcc
seems to do a fair bit better with this.
- [temporarily!] pessimize the tlb shootdown IPI handlers. I will fix
this again shortly.
This has been working fairly well for me for a while, but I have tweaked
it again prior to commit since my last major testing round. The only
outstanding problem that I know of is PG_G related, which is why there
is an option for it (not on by default for SMP). I have seen a world
speedups by a few percent (as much as 4 or 5% in one case) but I have
*not* accurately measured this - I am a bit sceptical of these numbers.