to dummy,yarrow and break the usability of /dev/random.
Fix the name of the tunable to something logical that 'sysctl kern.random'
emits.
Submitted by: des@ (the idea, code by me)
o Allow this to work with "nodevice random" by fixing where the MALLOC pool is defined.
o Fix the explicit reseed code. This was correct as submitted, but in the project branch doesn't need to set the "seeded" bit as this is done correctly in the "unblock" function.
o Remove some debug ifdeffing.
o Adjust comments.
Simplify the malloc pools; We only need one for this device.
Simplify the harvest queue.
Marginally improve the entropy pool hashing, making it a bit faster in the process.
Connect up the hardware "live" source harvesting. This is simplistic for now, and will need to be made rate-adaptive.
All of the above passes a compile test but needs to be debugged.
Contains:
* Refactor the hardware RNG CPU instruction sources to feed into
the software mixer. This is unfinished. The actual harvesting needs
to be sorted out. Modified by me (see below).
* Remove 'frac' parameter from random_harvest(). This was never
used and adds extra code for no good reason.
* Remove device write entropy harvesting. This provided a weak
attack vector, was not very good at bootstrapping the device. To
follow will be a replacement explicit reseed knob.
* Separate out all the RANDOM_PURE sources into separate harvest
entities. This adds some secuity in the case where more than one
is present.
* Review all the code and fix anything obviously messy or inconsistent.
Address som review concerns while I'm here, like rename the pseudo-rng
to 'dummy'.
Submitted by: Arthur Mesh <arthurmesh@gmail.com> (the first item)
* It's not meant to be used in a real system, it's there to show how
the basics of how to create interfaces for random_adaptors. Perhaps
it should belong in a manual page
2) Move probe.c's functionality in to random_adaptors.c
* rename random_ident_hardware() to random_adaptor_choose()
3) Introduce a new way to choose (or select) random_adaptors via tunable
"rngs_want" It's a list of comma separated names of adaptors, ordered
by preferences. I.e.:
rngs_want="yarrow,rdrand"
Such setting would cause yarrow to be preferred to rdrand. If neither of
them are available (or registered), then system will default to
something reasonable (currently yarrow). If yarrow is not present, then
we fall back to the adaptor that's first on the list of registered
adaptors.
4) Introduce a way where RNGs can play a role of entropy source. This is
mostly useful for HW rngs.
The way I envision this is that every HW RNG will use this
functionality by default. Functionality to disable this is also present.
I have an example of how to use this in random_adaptor_example.c (see
modload event, and init function)
5) fix kern.random.adaptors from
kern.random.adaptors: yarrowpanicblock
to
kern.random.adaptors: yarrow,panic,block
6) add kern.random.active_adaptor to indicate currently selected
adaptor:
root@freebsd04:~ # sysctl kern.random.active_adaptor
kern.random.active_adaptor: yarrow
Submitted by: Arthur Mesh <arthurmesh@gmail.com>
random_adaptor is basically an adapter that plugs in to random(4).
random_adaptor can only be plugged in to random(4) very early in bootup.
Unplugging random_adaptor from random(4) is not supported, and is probably a
bad idea anyway, due to potential loss of entropy pools.
We currently have 3 random_adaptors:
+ yarrow
+ rdrand (ivy.c)
+ nehemeiah
* Remove platform dependent logic from probe.c, and move it into
corresponding registration routines of each random_adaptor provider.
probe.c doesn't do anything other than picking a specific random_adaptor
from a list of registered ones.
* If the kernel doesn't have any random_adaptor adapters present then the
creation of /dev/random is postponed until next random_adaptor is kldload'ed.
* Fix randomdev_soft.c to refer to its own random_adaptor, instead of a
system wide one.
Submitted by: arthurmesh@gmail.com, obrien
Obtained from: Juniper Networks
Reviewed by: so (des)
* Make Yarrow an optional kernel component -- enabled by "YARROW_RNG" option.
The files sha2.c, hash.c, randomdev_soft.c and yarrow.c comprise yarrow.
* random(4) device doesn't really depend on rijndael-*. Yarrow, however, does.
* Add random_adaptors.[ch] which is basically a store of random_adaptor's.
random_adaptor is basically an adapter that plugs in to random(4).
random_adaptor can only be plugged in to random(4) very early in bootup.
Unplugging random_adaptor from random(4) is not supported, and is probably a
bad idea anyway, due to potential loss of entropy pools.
We currently have 3 random_adaptors:
+ yarrow
+ rdrand (ivy.c)
+ nehemeiah
* Remove platform dependent logic from probe.c, and move it into
corresponding registration routines of each random_adaptor provider.
probe.c doesn't do anything other than picking a specific random_adaptor
from a list of registered ones.
* If the kernel doesn't have any random_adaptor adapters present then the
creation of /dev/random is postponed until next random_adaptor is kldload'ed.
* Fix randomdev_soft.c to refer to its own random_adaptor, instead of a
system wide one.
Submitted by: arthurmesh@gmail.com, obrien
Obtained from: Juniper Networks
Reviewed by: obrien
structure copying in random_ident_hardware(). This change will also help
further modularization of random(4) subsystem.
Submitted by: arthurmesh@gmail.com
Reviewed by: obrien
Obtained from: Juniper Networks
uiomove(9) is not properly locked. So, return to NEEDGIANT
mode. Later, when uiomove is finely locked, I'll revisit.
While I'm here, provide some temporary debugging output to
help catch blocking startups.
can more easily be used INSTEAD OF the hard-working Yarrow.
The only hardware source used at this point is the one inside
the VIA C3 Nehemiah (Stepping 3 and above) CPU. More sources will
be added in due course. Contributions welcome!
o Each source gets its own queue, which is a FIFO, not a ring buffer.
The FIFOs are implemented with the sys/queue.h macros. The separation
is so that a low entropy/high rate source can't swamp the harvester
with low-grade entropy and destroy the reseeds.
o Each FIFO is limited to 256 (set as a macro, so adjustable) events
queueable. Full FIFOs are ignored by the harvester. This is to
prevent memory wastage, and helps to keep the kernel thread CPU
usage within reasonable limits.
o There is no need to break up the event harvesting into ${burst}
sized chunks, so retire that feature.
o Break the device away from its roots with the memory device, and
allow it to get its major number automagically.
o Separate the kernel stuff from the Yarrow algorithm. Yarrow is now
well contained in one source file and one header.
o Replace the Blowfish-based crypto routines with Rijndael-based ones.
(Rijndael is the new AES algorithm). The huge improvement in
Rijndael's key-agility over Blowfish means that this is an
extremely dramatic improvement in speed, and makes a heck of
a difference in its (lack of) CPU load.
o Clean up the sysctl's. At BDE's prompting, I have gone back to
static sysctls.
o Bug fixes. The streamlining of the crypto stuff enabled me to
find and fix some bugs. DES also found a bug in the reseed routine
which is fixed.
o Change the way reseeds clear "used" entropy. Previously, only the
source(s) that caused a reseed were cleared. Now all sources in the
relevant pool(s) are cleared.
o Code tidy-up. Mostly to make it (nearly) 80-column compliant.