In particular, do not lock Giant conditionally when calling into the
filesystem module, remove the VFS_LOCK_GIANT() and related
macros. Stop handling buffers belonging to non-mpsafe filesystems.
The VFS_VERSION is bumped to indicate the interface change which does
not result in the interface signatures changes.
Conducted and reviewed by: attilio
Tested by: pho
Add the sysctl debug.iosize_max_clamp, enabled by default. Setting the
sysctl to zero allows to perform the SSIZE_MAX-sized i/o requests from
the usermode.
Discussed with: bde, das (previous versions)
MFC after: 1 month
On amd64, link_elf_obj.c must specify KERNBASE rather than
VM_MIN_KERNEL_ADDRESS to vm_map_find() because kernel loadable
modules must be mapped for execution in the same upper region
of the kernel map as the kernel code and data segments.
For MIPS32 KERNBASE lies below KVA area (it's less than
VM_MIN_KERNEL_ADDRESS) so basically vm_map_find got whole
KVA to look through. On MIPS64 it's not the case because
KERNBASE is set to the very end of XKSEG, well out of KVA
bounds, so vm_map_find always fails. We should use
VM_MIN_KERNEL_ADDRESS as a base for vm_map_find.
Details obtained from: alc@
the linker_load_file methods. The change is that the consequent
linker_file_unload() call is not under the vnode lock anymore.
This prevents the LOR between kernel linker sx xlock and vnode lock,
because linker_file_unload() relocks kernel linker lock.
MFC after: 2 weeks
Current code doesn't check size of elf sections and may perform needless
actions of zero-sized memory allocation and similar.
The bigger issue is that alignment requirement of a zero-sized section
gets effectively applied to the next section if it has smaller alignment
requirement. But other tools, like gdb and consequently kgdb,
completely ignore zero-sized sections and thus may map symbols to
addresses differently.
Zero-sized sections are not typical in general.
Their typical (only, even) cause in FreeBSD modules is inline assembly that
creates custom sections which is found in pcpu.h and vnet.h. Mere inclusion
of one of those header files produces a custom section in elf output.
If there is no actual use for the section in a given module, then the
section remains empty.
Better solution is to avoid creating zero-sized sections altogether,
which is in plans.
Preloaded modules are handled in boot code (load_elf_obj.c), while
dynamically loaded modules are handled by kernel (link_elf_obj.c).
Based on code by: np
MFC after: 3 weeks
modules was present, which turns out to be false in some situations.
Back out the assertion.
Reported by: Luiz Otavio O Souza <lists.br at gmail.com>,
Florian Smeets <flo at kasimir.com>
Approved by: re (kensmith) (implicit)
(DPCPU), as suggested by Peter Wemm, and implement a new per-virtual
network stack memory allocator. Modify vnet to use the allocator
instead of monolithic global container structures (vinet, ...). This
change solves many binary compatibility problems associated with
VIMAGE, and restores ELF symbols for virtualized global variables.
Each virtualized global variable exists as a "reference copy", and also
once per virtual network stack. Virtualized global variables are
tagged at compile-time, placing the in a special linker set, which is
loaded into a contiguous region of kernel memory. Virtualized global
variables in the base kernel are linked as normal, but those in modules
are copied and relocated to a reserved portion of the kernel's vnet
region with the help of a the kernel linker.
Virtualized global variables exist in per-vnet memory set up when the
network stack instance is created, and are initialized statically from
the reference copy. Run-time access occurs via an accessor macro, which
converts from the current vnet and requested symbol to a per-vnet
address. When "options VIMAGE" is not compiled into the kernel, normal
global ELF symbols will be used instead and indirection is avoided.
This change restores static initialization for network stack global
variables, restores support for non-global symbols and types, eliminates
the need for many subsystem constructors, eliminates large per-subsystem
structures that caused many binary compatibility issues both for
monitoring applications (netstat) and kernel modules, removes the
per-function INIT_VNET_*() macros throughout the stack, eliminates the
need for vnet_symmap ksym(2) munging, and eliminates duplicate
definitions of virtualized globals under VIMAGE_GLOBALS.
Bump __FreeBSD_version and update UPDATING.
Portions submitted by: bz
Reviewed by: bz, zec
Discussed with: gnn, jamie, jeff, jhb, julian, sam
Suggested by: peter
Approved by: re (kensmith)
- Modules and kernel code alike may use DPCPU_DEFINE(),
DPCPU_GET(), DPCPU_SET(), etc. akin to the statically defined
PCPU_*. Requires only one extra instruction more than PCPU_* and is
virtually the same as __thread for builtin and much faster for shared
objects. DPCPU variables can be initialized when defined.
- Modules are supported by relocating the module's per-cpu linker set
over space reserved in the kernel. Modules may fail to load if there
is insufficient space available.
- Track space available for modules with a one-off extent allocator.
Free may block for memory to allocate space for an extent.
Reviewed by: jhb, rwatson, kan, sam, grehan, marius, marcel, stas
in symtab_get method symtab parameter is made constant as this reflects
actual intention and usage of the method
Reviewed by: imp, current@
Approved by: jhb (mentor)
and used in a large number of files, but also because an increasing number
of incorrect uses of MAC calls were sneaking in due to copy-and-paste of
MAC-aware code without the associated opt_mac.h include.
Discussed with: pjd
get a quick snapshot of the kernel's symbol table including the symbols
from any loaded modules (the symbols are all merged into one symbol
table). Unlike like other implementations, this ksyms driver maps
memory in the process memory space to store the snapshot at the time
/dev/ksyms is opened. It also checks to see if the process has already
a snapshot open and won't allow it to open /dev/ksyms it again until it
closes first. This prevents kernel and process memory from being
exhausted. Note that /dev/ksyms is used by the lockstat(1) command.
Reviewed by: gallatin kib (freebsd-arch)
Approved by: gnn (mentor)
result in errors for a format loading but subsequent correct recognizing
for another format.
File format loading functions should avoid printing any additional
informations but just returning appropriate (and different between each
other) error condition, characterizing different informations.
Additively, the linker should handle appropriately different format
loading errors.
While a general mechanism is desired, fix a simple and common case on
amd64: file type is not recognized for link elf and confuses the linker.
Printout an error if all the registered linker classes can't recognize
and load the module.
Reviewed by: jhb
Sponsored by: Sandvine Incorporated
vnode lock may cause a LOR between kld_sx lock and vnode lock.
linker_load_dependencies() drops kld_sx, and another thread may attempt
to load the same kld.
Reported and tested by: pjd
MFC after: 1 week
the elf files. This is complicated by the fact that the actual CTF
parsing has to be done in CDDL'd code, so the BSD licensed code only
knows about the opaque data which it must be able to free.
conjuction with 'thread' argument passing which is always curthread.
Remove the unuseful extra-argument and pass explicitly curthread to lower
layer functions, when necessary.
KPI results broken by this change, which should affect several ports, so
version bumping and manpage update will be further committed.
Tested by: kris, pho, Diego Sardina <siarodx at gmail dot com>
from Mac OS X Leopard--rationalize naming for entry points to
the following general forms:
mac_<object>_<method/action>
mac_<object>_check_<method/action>
The previous naming scheme was inconsistent and mostly
reversed from the new scheme. Also, make object types more
consistent and remove spaces from object types that contain
multiple parts ("posix_sem" -> "posixsem") to make mechanical
parsing easier. Introduce a new "netinet" object type for
certain IPv4/IPv6-related methods. Also simplify, slightly,
some entry point names.
All MAC policy modules will need to be recompiled, and modules
not updates as part of this commit will need to be modified to
conform to the new KPI.
Sponsored by: SPARTA (original patches against Mac OS X)
Obtained from: TrustedBSD Project, Apple Computer
Change the VOP_OPEN(), vn_open() vnode operation and d_fdopen() cdev operation
argument from being file descriptor index into the pointer to struct file.
Proposed and reviewed by: jhb
Reviewed by: daichi (unionfs)
Approved by: re (kensmith)
__stop_<section> symbols generated by the static linker for elf
sections. This is done only for the final link, and not for ld -r.
Augment elf_obj in-kernel linker by recognizing such special symbols,
and resolving them to the start and end of the section automatically.
As result, linker sets on amd64 could be used in the same way as on
other architectures, without explicit calls to linker_file_lookup_set().
Requested by: rdivacky
No objections from: peter, jhb
begun with a repo-copy of mac.h to mac_framework.h. sys/mac.h now
contains the userspace and user<->kernel API and definitions, with all
in-kernel interfaces moved to mac_framework.h, which is now included
across most of the kernel instead.
This change is the first step in a larger cleanup and sweep of MAC
Framework interfaces in the kernel, and will not be MFC'd.
Obtained from: TrustedBSD Project
Sponsored by: SPARTA
protect all linker-related data structures including the contents of
linker file objects and the any linker class data as well. Considering how
rarely the linker is used I just went with the simple solution of
single-threading the whole thing rather than expending a lot of effor on
something more fine-grained and complex. Giant is still explicitly
acquired while registering and deregistering sysctl's as well as in the
elf linker class while calling kmupetext(). The rest of the linker runs
without Giant unless it has to acquire Giant while loading files from a
non-MPSAFE filesystem.
means:
o Remove Elf64_Quarter,
o Redefine Elf64_Half to be 16-bit,
o Redefine Elf64_Word to be 32-bit,
o Add Elf64_Xword and Elf64_Sxword for 64-bit entities,
o Use Elf_Size in MI code to abstract the difference between
Elf32_Word and Elf64_Word.
o Add Elf_Ssize as the signed counterpart of Elf_Size.
MFC after: 2 weeks
Add a MOD_QUIESCE event for modules. This should return error (EBUSY)
of the module is in use.
MOD_UNLOAD should now only fail if it is impossible (as opposed to
inconvenient) to unload the module. Valid reasons are memory references
into the module which cannot be tracked down and eliminated.
When kldunloading, we abandon if MOD_UNLOAD fails, and if -force is
not given, MOD_QUIESCE failing will also prevent the unload.
For backwards compatibility, we treat EOPNOTSUPP from MOD_QUIESCE as
success.
Document that modules should return EOPNOTSUPP for unknown events.
other modules to explode. eg: snd_ich->snd_pcm and umass->usb.
The problem was that I was using the unified base address of the module
instead of finding the start address of the section in question.
(nobits) tables to simplify some code. Try and shorten some of the very
wide lines. Somewhere along the way, I think I fixed the memory
corruption that caused panics after going multiuser.
as dependent on binutils features/quirks as the current one. This one
loads plain .o files without having to mess with shared object mode.
This happens to be essential on amd64, because binutils hasn't implemented
all the quirks/features that we need for producing the hack non-PIC shared
objects. As it turned out, .o format isn't all that inconvenient after
all. It looks like the ability to use the same .o files for linking
directly into a static kernel or loading as a module might be worth it.
It is still very much a work-in-progress, but it is almost usable. Other
changes are still needed in order to use it though, these have not been
committed yet. There is still a memory corruption/overrun bug somewhere.
For example, test modules load and work, but the machine explodes a few
minutes later in vm_forkproc() or the like. Notable missing things
include kldxref support, and loader(8) support. I wanted to figure out
a working baseline set of code first.
- All those diffs to syscalls.master for each architecture *are*
necessary. This needed clarification; the stub code generation for
mlockall() was disabled, which would prevent applications from
linking to this API (suggested by mux)
- Giant has been quoshed. It is no longer held by the code, as
the required locking has been pushed down within vm_map.c.
- Callers must specify VM_MAP_WIRE_HOLESOK or VM_MAP_WIRE_NOHOLES
to express their intention explicitly.
- Inspected at the vmstat, top and vm pager sysctl stats level.
Paging-in activity is occurring correctly, using a test harness.
- The RES size for a process may appear to be greater than its SIZE.
This is believed to be due to mappings of the same shared library
page being wired twice. Further exploration is needed.
- Believed to back out of allocations and locks correctly
(tested with WITNESS, MUTEX_PROFILING, INVARIANTS and DIAGNOSTIC).
PR: kern/43426, standards/54223
Reviewed by: jake, alc
Approved by: jake (mentor)
MFC after: 2 weeks