Most part is merged from amd64.
- i386/acpica/acpi_wakecode.S
Replaced with amd64 code (from realmode to paging enabling code).
- i386/acpica/acpi_wakeup.c
Replaced with amd64 code (except for wakeup_pagetables stuff).
- i386/include/pcb.h
- i386/i386/genassym.c
Added PCB new members (CR0, CR2, CR4, DS, ED, FS, SS, GDT, IDT, LDT
and TR) needed for suspend/resume, not for context switch.
- i386/i386/swtch.s
Added suspendctx() and resumectx().
Note that savectx() was not changed and used for suspending (while
amd64 code uses it).
BSP and AP execute the same sequence, suspendctx(), acpi_wakecode()
and resumectx() for suspend/resume (in case of UP system also).
- i386/i386/apic_vector.s
Added cpususpend().
- i386/i386/mp_machdep.c
- i386/include/smp.h
Added cpususpend_handler().
- i386/include/apicvar.h
- kern/subr_smp.c
- sys/smp.h
Added IPI_SUSPEND and suspend_cpus().
- i386/i386/initcpu.c
- i386/i386/machdep.c
- i386/include/md_var.h
- pc98/pc98/machdep.c
Moved initializecpu() declarations to md_var.h.
MFC after: 3 days
- Return failure for a suspend attempt if we have no wake address.
- Use intr_disable()/intr_restore() instead of ACPI_DISABLE_IRQS().
- Invoke intr_suspend() earlier and call intr_resume() if suspend
fails.
- Use pause in the loop waiting for CPU to suspend.
- Restore PAT MSR, switchtime, switchticks, and MTRRs on resume.
Reviewed by: jkim (earlier version)
MFC after: 2 weeks
Move logic of building ACPI headers for acpi_wakeup.c into better places,
remove intermediate makefile and shell script, and reduce diff between i386
and amd64.
- Register APIC enumerators at SI_SUB_TUNABLES - 1 instead of SI_SUB_CPU - 1.
- Probe CPUs at SI_SUB_TUNABLES - 1. This allows i386 to set a truly
accurate mp_maxid value rather than always setting it to MAXCPU - 1.
Makefiles or *.mk files, use ${CC:T:Mfoo} instead, so only the basename
of the compiler command (excluding any arguments) is considered.
This allows you to use, for example, CC="/nondefault/path/clang -xxx",
and still have the various tests in bsd.*.mk identify your compiler as
clang correctly.
ICC if cases were also changed.
Submitted by: Dimitry Andric <dimitry at andric.com>
checksums as the base acpi(4) driver. This fixes a problem where the MADT
parser would reject the MADT table during early boot causing the MP Table
to be, but then the acpi(4) driver would attach and use non-SMP interrupt
routing.
Tested by: Alastair Hogge agh of coolrhaug com
MFC after: 1 week
startup and genericize it so it can be reused to map other tables as well:
- Add a routine to walk a list of ACPI subtables such as those used in the
APIC and SRAT tables in the MI acpi(4) driver.
- Move the routines for mapping and unmapping an ACPI table as well as
mapping the RSDT or XSDT and searching for a table with a given signature
out into acpica_machdep.c for both amd64 and i386.
The newbus lock is responsible for protecting newbus internIal structures,
device states and devclass flags. It is necessary to hold it when all
such datas are accessed. For the other operations, softc locking should
ensure enough protection to avoid races.
Newbus lock is automatically held when virtual operations on the device
and bus are invoked when loading the driver or when the suspend/resume
take place. For other 'spourious' operations trying to access/modify
the newbus topology, newbus lock needs to be automatically acquired and
dropped.
For the moment Giant is also acquired in some key point (modules subsystem)
in order to avoid problems before the 8.0 release as module handlers could
make assumptions about it. This Giant locking should go just after
the release happens.
Please keep in mind that the public interface can be expanded in order
to provide more support, if there are really necessities at some point
and also some bugs could arise as long as the patch needs a bit of
further testing.
Bump __FreeBSD_version in order to reflect the newbus lock introduction.
Reviewed by: ed, hps, jhb, imp, mav, scottl
No answer by: ariff, thompsa, yongari
Tested by: pho,
G. Trematerra <giovanni dot trematerra at gmail dot com>,
Brandon Gooch <jamesbrandongooch at gmail dot com>
Sponsored by: Yahoo! Incorporated
Approved by: re (ksmith)
vnode interlock to protect the knote fields [1]. The locking assumes
that shared vnode lock is held, thus we get exclusive access to knote
either by exclusive vnode lock protection, or by shared vnode lock +
vnode interlock.
Do not use kl_locked() method to assert either lock ownership or the
fact that curthread does not own the lock. For shared locks, ownership
is not recorded, e.g. VOP_ISLOCKED can return LK_SHARED for the shared
lock not owned by curthread, causing false positives in kqueue subsystem
assertions about knlist lock.
Remove kl_locked method from knlist lock vector, and add two separate
assertion methods kl_assert_locked and kl_assert_unlocked, that are
supposed to use proper asserts. Change knlist_init accordingly.
Add convenience function knlist_init_mtx to reduce number of arguments
for typical knlist initialization.
Submitted by: jhb [1]
Noted by: jhb [2]
Reviewed by: jhb
Tested by: rnoland
bogus entries have a starting IRQ that is invalid (> 255, so won't fit
into a PCI intline config register). It had the side effect of breaking
MSI by "claiming" several IRQs in the MSI range. Fix this by ignoring such
I/O APICs.
MFC after: 2 weeks
When I changed kern_conf.c three months ago I made device unit numbers
equal to (unneeded) device minor numbers. We used to require
bitshifting, because there were eight bits in the middle that were
reserved for a device major number. Not very long after I turned
dev2unit(), minor(), unit2minor() and minor2unit() into macro's.
The unit2minor() and minor2unit() macro's were no-ops.
We'd better not remove these four macro's from the kernel, because there
is a lot of (external) code that may still depend on them. For now it's
harmless to remove all invocations of unit2minor() and minor2unit().
Reviewed by: kib
Except for the case where we use the cloner library (clone_create() and
friends), there is no reason to enforce a unique device minor number
policy. There are various drivers in the source tree that allocate unr
pools and such to provide minor numbers, without using them themselves.
Because we still need to support unique device minor numbers for the
cloner library, introduce a new flag called D_NEEDMINOR. All cdevsw's
that are used in combination with the cloner library should be marked
with this flag to make the cloning work.
This means drivers can now freely use si_drv0 to store their own flags
and state, making it effectively the same as si_drv1 and si_drv2. We
still keep the minor() and dev2unit() routines around to make drivers
happy.
The NTFS code also used the minor number in its hash table. We should
not do this anymore. If the si_drv0 field would be changed, it would no
longer end up in the same list.
Approved by: philip (mentor)
after each SYSINIT() macro invocation. This makes a number of
lightweight C parsers much happier with the FreeBSD kernel
source, including cflow's prcc and lxr.
MFC after: 1 month
Discussed with: imp, rink
different "platforms" on x86 machines. The existing code already handles
having two platforms: ACPI and legacy. However, the existing approach was
rather hardcoded and difficult to extend. These changes take the approach
that each x86 hardware platform should provide its own nexus(4) driver (it
can inherit most of its behavior from the default legacy nexus(4) driver)
which is responsible for probing for the platform and performing
appropriate platform-specific setup during attach (such as adding a
platform-specific bus device). This does mean changing the x86 platform
busses to no longer use an identify routine for probing, but to move that
logic into their matching nexus(4) driver instead.
- Make the default nexus(4) driver in nexus.c on i386 and amd64 handle the
legacy platform. It's probe routine now returns BUS_PROBE_GENERIC so it
can be overriden.
- Expose a nexus_init_resources() routine which initializes the various
resource managers so that subclassed nexus(4) drivers can invoke it from
their attach routine.
- The legacy nexus(4) driver explicitly adds a legacy0 device in its
attach routine.
- The ACPI driver no longer contains an new-bus identify method. Instead
it exposes a public function (acpi_identify()) which is a probe routine
that the MD nexus(4) drivers can use to probe for ACPI. All of the
probe logic in acpi_probe() is now moved into acpi_identify() and
acpi_probe() is just a stub.
- On i386 and amd64, an ACPI-specific nexus(4) driver checks for ACPI via
acpi_identify() and claims the nexus0 device if the probe succeeds. It
then explicitly adds an acpi0 device in its attach routine.
- The legacy(4) driver no longer knows anything about the acpi0 device.
- On ia64 if acpi_identify() fails you basically end up with no devices.
This matches the previous behavior where the old acpi_identify() would
fail to add an acpi0 device again leaving you with no devices.
Discussed with: imp
Silence on: arch@
aligned (or at least not cross a page boundary). However, it turns out
that on at least one machine one table header does cross a page boundary.
This caused problems with the MADT early probe as it uses the crash dump
map to load ACPI tables by loading the RSDT/XSDT into pages 1 ... N and
loading the header of each ACPI table header into page 0 looking for the
MADT. However, if a table header crossed a page boundary, then page 1
would get trashed resulting in a panic. Fix this by reserving the first
2 pages for ACPI table headers (headers are less than a page in size,
so 2 pages will be sufficient) and use pages 2 .. N for the RSDT and XSDT.
Note: amd64 should probably be simplified to just use pmap_mapbios()
for all these tables which will use the direct map and not need the
crash dump hack.
MFC after: 5 days
Tested on: i386
Reported by: Pete French petefrench of ticketswitch.com
topology foo functions.
Working at the patch for topology problems in ia32/amd64 evicted some
problems regarding functions ordering in the SI_SUB_CPU family of
SYSINIT'ed subsystems.
In order to avoid problems with new modified to involved functions, a
correct ordering is not semantically specified for SI_SUB_CPU functions
(for a larger view of the issue please visit:
http://lists.freebsd.org/pipermail/freebsd-current/2007-July/075409.html )
Discussed with: peter
Tested by: kris, Rui Paulo <rpaulo@FreeBSD.org>
Approved by: jeff
Approved by: re
Improvements:
* /etc/rc.suspend,rc.resume are always run, no matter the source of the
suspend request (user or kernel, apm or acpi)
* suspend now requires positive user acknowledgement. If a user program
wants to cancel the suspend, they can. If one of the user programs
hangs or doesn't respond within 10 seconds, the system suspends anyway.
* /dev/apm is clonable, allowing multiple listeners for suspend events.
In the future, xorg-server can use this to be informed about suspend
even if there are other listeners (i.e. apmd).
Changes:
* Two new ACPI ioctls: REQSLPSTATE and ACKSLPSTATE. Request begins the
process of suspending by notifying all listeners. acpi is monitored by
devd(8) and /dev/apm listener(s) are also counted. Users register their
approval or disapproval via Ack. If anyone disapproves, suspend is vetoed.
* Old user programs or kernel modules that used SETSLPSTATE continue to
work. A message is printed once that this interface is deprecated.
* acpiconf gains the -k flag to ack the suspend request. This flag is
undocumented on purpose since it's only used by /etc/rc.suspend. It is
not intended to be a permanent change and will be removed once a better
power API is implemented.
* S5 (power off) is no longer supported via acpiconf -s 5 or apm -z/-Z.
This restores previous behavior of halt/shutdown -p being the interface.
* Miscellaneous improvements to error reporting
Approved by: re
an APIC ID of 38 for its second CPU):
- Add a new MAX_APIC_ID constant for the highest valid APIC ID for modern
systems.
- Size the various arrays in the MADT, MP Table, and SMP code that are
indexed by APIC IDs to allow for up to MAX_APIC_ID.
- Explicitly go through and assign logical cpu ids to local APICs before
starting any of the APs up rather than doing it while starting up the
APs. This step is now where we honor MAXCPU.
MFC after: 1 week
obtaining and releasing shared and exclusive locks. The algorithms for
manipulating the lock cookie are very similar to that rwlocks. This patch
also adds support for exclusive locks using the same algorithm as mutexes.
A new sx_init_flags() function has been added so that optional flags can be
specified to alter a given locks behavior. The flags include SX_DUPOK,
SX_NOWITNESS, SX_NOPROFILE, and SX_QUITE which are all identical in nature
to the similar flags for mutexes.
Adaptive spinning on select locks may be enabled by enabling the
ADAPTIVE_SX kernel option. Only locks initialized with the SX_ADAPTIVESPIN
flag via sx_init_flags() will adaptively spin.
The common cases for sx_slock(), sx_sunlock(), sx_xlock(), and sx_xunlock()
are now performed inline in non-debug kernels. As a result, <sys/sx.h> now
requires <sys/lock.h> to be included prior to <sys/sx.h>.
The new kernel option SX_NOINLINE can be used to disable the aforementioned
inlining in non-debug kernels.
The size of struct sx has changed, so the kernel ABI is probably greatly
disturbed.
MFC after: 1 month
Submitted by: attilio
Tested by: kris, pjd
boot. Then, just switch to the kernel pmap when suspending instead of
allocating/freeing our own mapping every time. This should solve a panic
of pmap_remove() being called with interrupts disabled. Thanks to Alan
Cox for developing this patch.
Note: this means that ACPI requires super page (PG_PS) support in the CPU.
This has been present since the Pentium and first documented in the
Pentium Pro. However, it may need to be revisited later.
Submitted by: alc
MFC after: 1 month
from both the acpi module build directory and a kernel build directory.
The latter didn't work when one attempted to build a kernel which had
"device acpi" with the "make kernel-toolchain buildkernel" command
because a cross-compiler couldn't find anything in the standard system
include path (it's empty in the kernel-toolchain case).
Fix this by passing a better root path to kernel headers (src/sys)
which works for both cases, kernel and module (-I@ only worked for
module).
Also, while here, pass -nostdinc (and a different spelling for icc) --
it's a feature that the kernel source tree is self-contained, and this
change enforces this.
Reported by: glebius
WB (write-back) on x86 via control bits in PTEs and PDEs (including making
use of the PAT MSR). Changes include:
- A new pmap_mapdev_attr() function for amd64 and i386 which takes an
additional parameter (relative to pmap_mapdev()) specifying the cache
mode for this mapping. Note that on amd64 only WB mappings are done with
the direct map, all other modes result in a private mapping.
- pmap_mapdev() on i386 and amd64 now defaults to using UC (uncached)
mappings rather than WB. Previously we relied on the BIOS setting up
MTRR's to enforce memio regions being treated as UC. This might make
hw.cbb_start_memory unnecessary in some cases now for example.
- A new pmap_mapbios()/pmap_unmapbios() API has been added to allow places
that used pmap_mapdev() to map non-device memory (such as ACPI tables)
to do so using WB as before.
- A new pmap_change_attr() function for amd64 and i386 that changes the
caching mode for a range of KVA.
Reviewed by: alc
not be necessary but might be helpful and at least reduce fragmentation.
* Add an assert to detect if the wakecode ever grows too big. We include
1 KB for stack, which should be more than enough also.
* Remove unnecessary initialization of static variables.
* Add comments and a bootverbose print giving the page phys address.
to 4. There is no need to be more strict at assembly time since we copy
the code anyway to a private page.
* Clear the direction flag and eflags. Probably not necessary but it won't
hurt to be safe.
* Add prefixes to all instructions to prevent any assembler mistakes.
* Remove zeroing of eax - edi. We use those registers immediately after
to transfer values to protected mode so this was pointless.
* Update comments to reflect info found during code review.